Exciton−exciton annihilation is a ubiquitous nonlinear dynamic phenomenon in materials hosting Frenkel excitons. In this work, we investigate the nonlinear exciton dynamics of an electron push−pull conjugated polymer by fluence-dependent transient absorption and excitation-correlation photoluminescence spectroscopy, where we can quantitatively show the latter to be a more selective probe of the nonlinear dynamics. Simulations based on a time-independent exciton annihilation model show a decreasing trend for the extracted annihilation rates with excitation0 fluence. Further investigation of the fluence-dependent transients suggests that the exciton−exciton annihilation bimolecular rates are not constant in time, displaying a t−1/2 time dependence, which we rationalize as reflective of one-dimensional exciton diffusion, with a length estimated to be 9 ± 2 nm. In addition, exciton annihilation gives rise to a long-lived species that recombines on a nanosecond time scale. Our conclusions shed broad light onto nonlinear exciton dynamics in push−pull conjugated polymers.
more »
« less
Chain Conformation and Exciton Delocalization in a Push–Pull Conjugated Polymer
Linear and nonlinear optical lineshapes reveal details of excitonic structure in semiconductor polymers. We implement absorption, photoluminescence, and transient absorption spectroscopies in DPP-DTT, an electron push-pull copolymer, to explore the relationship between their spectral lineshapes and chain conformation, deduced from resonance Raman spectroscopy and from ab initio calculations. The viscosity of precursor polymer solutions before film casting displays a transition that suggests gel formation above a critical concentration. Upon crossing this viscosity deflection concentration, the lineshape analysis of the absorption spectra within a photophysical aggregate model reveals a gradual increase in interchain excitonic coupling. We also observe a red-shifted and line-narrowed steady-state photoluminescence spectrum, along with increasing resonance Raman intensity in the stretching and torsional modes of the dithienothiphene unit, which suggests a longer exciton coherence length along the polymer-chain backbone. Furthermore, we observe a change of lineshape in the photoinduced absorption component of the transient absorption spectrum. The derivative-like lineshape may originate from two possibilities: a new excited-state absorption, or from Stark effect, both of which are consistent with the emergence of high-energy shoulder as seen in both photoluminescence and absorption spectra. Therefore, we conclude that the exciton is more dispersed along the polymer chain backbone with increasing concentrations, leading to the hypothesis that the polymer chain order is enhanced when the push-pull polymers are processed at higher concentrations. Thus, tuning the microscopic chain conformation by concentration would be another factor of interest when considering the polymer assembly pathways for pursuing large-area and high-performance organic optoelectronic devices.
more »
« less
- Award ID(s):
- 1922111
- PAR ID:
- 10531349
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Chemistry of Materials
- Edition / Version:
- 1
- Volume:
- 35
- Issue:
- 23
- ISSN:
- 0897-4756
- Page Range / eLocation ID:
- 10258 to 10267
- Subject(s) / Keyword(s):
- DPP-DTT, transient absorption spectroscopy, nonlinear spectroscopy, exciton delocalization
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bound and unbound Frenkel-exciton pairs are essential transient precursors for a variety of photophysical and biochemical processes. In this work, we identify bound and unbound Frenkel-exciton complexes in an electron push−pull polymer semiconductor using coherent two- dimensional spectroscopy. We find that the dominant A0−1 peak of the absorption vibronic progression is accompanied by a subpeak, each dressed by distinct vibrational modes. By considering the Liouville pathways within a two-exciton model, the imbalanced cross-peaks in one-quantum rephasing and nonrephasing spectra can be accounted for by the presence of pure biexcitons. The two-quantum nonrephasing spectra provide direct evidence for unbound exciton pairs and biexcitons with dominantly attractive force. In addition, the spectral features of unbound exciton pairs show mixed absorptive and dispersive character, implying many-body interactions within the correlated Frenkel-exciton pairs. Our work offers novel perspectives on the Frenkel-exciton complexes in semiconductor polymers.more » « less
-
Polymers are a primary building block in many biomaterials, often interacting with anisotropic backgrounds. While previous studies have considered polymer dynamics within nematic solvents, rarely are the effects of anisotropic viscosity and polymer elongation differentiated. Here, we study polymers embedded in nematic liquid crystals with isotropic viscosity via numerical simulations to explicitly investigate the effect of nematicity on macromolecular conformation and how conformation alone can produce anisotropic dynamics. We employ a hybrid multi-particle collision dynamics and molecular dynamics technique that captures nematic orientation, thermal fluctuations and hydrodynamic interactions. The coupling of the polymer segments to the director field of the surrounding nematic elongates the polymer, producing anisotropic diffusion even in nematic solvents with isotropic viscosity. For intermediate coupling, the competition between background anisotropy and macromolecular entropy leads to hairpins – sudden kinks along the backbone of the polymer. Experiments of DNA embedded in a solution of rod-like fd viruses qualitatively support the role of hairpins in establishing characteristic conformational features that govern polymer dynamics. Hairpin diffusion along the backbone exponentially slows as coupling increases. Better understanding two-way coupling between polymers and their surroundings could allow the creation of more biomimetic composite materials.more » « less
-
ABSTRACT Biomimetic designs are inspired by the complex and unique behavior of naturally occurring materials, and can be applied to many systems, including polymers. ZIPer polymers (Zwitter arene‐ion like polymer) are inspired by byssal threads found on mussels, and their physical state is highly sensitive to various environmental conditions. Specifically, the ZIPer polymer undergoes chemospecific phase transitions, exhibiting potential for its use as an ionic responsive technology. Though this phenomenon has been observed with Raman spectroscopy, little is known about how salt identity or concentration affect polymer inter‐ and intra‐chain interactions. Previous studies have used Raman spectroscopy to analyze ZIPer polymer behavior in the presence of salt; however, the effect is typically only observed with sodium chloride and often only compares spectra at two concentrations. Additionally, studies have mainly focused on the spectral evidence of cation–π interactions, significantly narrowing their spectral range. In order to develop a more predictive framework for ZIPer polymer behavior, a range of salt identities and concentrations need to be tested. This study uses Raman spectroscopy to investigate ZIPer polymer behavior in the presence of a series of salts, namely NaCl, NaOTFA, NaBr, NaBF4, and NaPF6, each at 0.1 M, 0.5 M, 1.0 M, and 1.5 M concentrations. Moreover, we observe spectral changes in a range from 550 to 2000 cm−1. Spectral evidence suggests that the cation–π interactions previously hypothesized to be the driver of ZIPer polymer behavior are not the only mechanism determining the chemoresponsive phase transitions. We hypothesize that cation–π interactions and dispersion forces are competing mechanisms controlling ZIPer polymer behavior. Furthermore, we suggest that at certain concentrations the dominating mechanism transitions, and this inflection point is salt identity dependent.more » « less
-
We investigated the pressure-dependent exciton absorption and photoluminescence (PL) properties of colloidal InAs/ZnSe core/shell quantum dots (QDs) emitting near-infrared (NIR) photons, an environmentally friendly alternative to heavy-metal-containing NIR QDs. A detailed analysis of exciton absorption and emission spectra was conducted in the pressure range of 0–10 GPa, focusing on the energy shifts, PL intensity, and lineshape changes with pressure. The pressure coefficients for exciton absorption and PL peaks were ∼70% of the bulk InAs value, with enhanced bandgap nonlinearity tentatively attributed to the higher bulk modulus of QDs compared to bulk material. The pressure-induced shifts in exciton absorption and PL peaks were reversible upon compression and decompression, with no indication of the semiconductor-to-metallic phase transition observed in bulk InAs around 7 GPa. However, PL intensity exhibited partial irreversibility, suggesting defect formation at the core/shell interface under pressure. From the findings of this study, along with previous high-pressure studies on molecular beam epitaxy-grown InAs QDs on GaAs, we infer the importance of the shell in determining the pressure response of exciton absorption and PL in core/shell QD structures with non-negligible interfacial strain and wave function spill into the shell.more » « less
An official website of the United States government

