Abstract We explore the characteristics of EMIC waves generated in a non‐dipole, compressed magnetic field at the minimum of the magnetic field. We conducted 2D full‐wave simulations using the Petra‐M code, focusing on a compressed magnetic field in the outer dayside magnetosphere for a range ofLvalues . By comparing the simulation results with MMS observations, we aim to understand how the observed wave characteristics are affected by a shifting source region across different L‐shells. Our findings indicate that the direction of the Poynting vector systematically changes depending on the local source location of the wave, which is consistent with the observations. EMIC waves propagate along the magnetic field line and reach both the northern and southern hemispheres; however, there is a notable difference in the power of EMIC waves between the two hemispheres, indicating seasonal asymmetries in their occurrence.
more »
« less
Applications of the Petra-M simulation code for the magnetospheric physics
We present applications of the full-wave solver, Petra-M code for Earth magnetospheric plasma wave physics by leveraging the current effort of the radio frequency wave project. Because the Petra-M code uses the modular finite element method (MFEM) library, the boundary shapes, plasma density profiles, and realistic planetary magnetic fields can be easily adapted. In order to incorporate realistic Earth’s magnetic field into the Petra-M, we utilize the self-consistent magnetospheric flux models for compressed and stretched magnetic fields and realistic magnetospheric magnetic field geometries extracted from global MHD simulations. Using Petra-M code, we then examine ultra-low frequency (ULF) wave propagations in various magnetic field shapes. For example, left-handed polarized electromagnetic ion cyclotron waves in Earth’s dipole and compressed magnetic field are examined to consider waves in the inner and dayside outer magnetospheres, respectively. Mode-converted Alfvén wave propagation is also demonstrated in the compressed (dayside), stretched(nightside), and realistically stretched magnetic field (magnetotail). Therefore, the Petra-M code successfully demonstrates magnetospheric plasma wave propagation despite the spatial scale differences between the fusion devices (~m) and Earth’s magnetosphere (103 − 104km).
more »
« less
- Award ID(s):
- 2131013
- PAR ID:
- 10531412
- Publisher / Repository:
- AIP Publishing
- Date Published:
- ISSN:
- 1551-7616
- Subject(s) / Keyword(s):
- Ultra low frequency, Magnetospheric physics, Outer magnetosphere, Planetary magnetic fields, Finite-element analysis, Fusion reactors, Cyclotrons, Libraries, Magnetospheric plasmas, Plasma properties and parameters
- Format(s):
- Medium: X
- Location:
- Annapolis, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Electromagnetic ion cyclotron (EMIC) waves can scatter radiation belt electrons with energies of a few hundred keV and higher. To accurately predict this scattering and the resulting precipitation of these relativistic electrons on short time scales, we need detailed knowledge of the wave field’s spatio-temporal evolution, which cannot be obtained from single spacecraft measurements. Our study presents EMIC wave models obtained from two-dimensional (2D) finite-difference time-domain (FDTD) simulations in the Earth’s dipole magnetic field. We study cases of hydrogen band and helium band wave propagation, rising-tone emissions, packets with amplitude modulations, and ducted waves. We analyze the wave propagation properties in the time domain, enabling comparison within situobservations. We show that cold plasma density gradients can keep the wave vector quasiparallel, guide the wave energy efficiently, and have a profound effect on mode conversion and reflections. The wave normal angle of unducted waves increases rapidly with latitude, resulting in reflection on the ion hybrid frequency, which prohibits propagation to low altitudes. The modeled wave fields can serve as an input for test-particle analysis of scattering and precipitation of relativistic electrons and energetic ions.more » « less
-
Statistical Properties of Quasi‐Periodic Electromagnetic Ion Cyclotron Waves: ULF Modulation EffectsAbstract Electromagnetic ion cyclotron (EMIC) waves effectively scatter relativistic electrons in Earth's radiation belts and energetic ions in the ring current. Empirical models parameterizing the EMIC wave characteristics are important elements of inner magnetosphere simulations. Two main EMIC wave populations included in such simulations are the population generated by plasma sheet injections and another population generated by magnetospheric compression due to the solar wind. In this study, we investigate a third class of EMIC waves, generated by hot plasma sheet ions modulated by compressional ultra‐low frequency (ULF) waves. Such ULF‐modulated EMIC waves are mostly observed on the dayside, between magnetopause and the outer radiation belt edge. We show that ULF‐modulated EMIC waves are weakly oblique (with a wave normal angle ) and narrow‐banded (with a spectral width of of the mean frequency). We construct an empirical model of the EMIC wave characteristics as a function of ‐shell and MLT. The low ratio of electron plasma frequency to electron gyrofrequency around the EMIC wave generation region does not allow these waves to scatter energetic electrons. However, these waves provide very effective (comparable to strong diffusion) quasi‐periodic precipitation of plasma sheet protons.more » « less
-
Abstract Previous statistical studies have described the distributions and properties of whistler‐mode waves in Jupiter's magnetosphere, but explaining these wave distributions requires modeling wave propagation from their generation near the magnetic equator. In this letter, we conduct ray tracing of whistler‐mode waves based on realistic Jovian magnetic field and density models. The ray tracing results generally agree with the statistical wave distributions based on Juno measurements. The modeled ray paths show that high‐frequency waves generated near the equator are confined within 20° magnetic latitude due to Landau damping, low‐frequency waves can propagate to higher latitudes and lowerM‐shells, with changing wave normal angles, and a portion of low‐frequency waves could propagate to highMshells at high latitudes. Our modeling results provide a theoretical interpretation of whistler‐mode wave distributions and properties, providing essential insights for future radiation belt models at Jupiter.more » « less
-
Abstract A well-known shortcoming of single-spacecraft spectral analysis is that only the 1D wavenumber spectrum can be observed, assuming the characteristic wave propagation speed is much smaller than the solar wind flow speed. This limitation has motivated an extended debate about whether fluctuations observed in the solar wind are waves or structures. Multispacecraft analysis techniques can be used to calculate the wavevector independent of the observed frequency, thus allowing one to study the frequency–wavenumber spectrum of turbulence directly. The dispersion relation for waves can be identified, which distinguishes them from nonpropagating structures. We use magnetic field data from the four Magnetospheric Multiscale (MMS) spacecraft to measure the frequency–wavenumber spectrum of solar wind turbulence based on the k -filtering and phase differencing techniques. Both techniques have been used successfully in the past for the Earth’s magnetosphere, although applications to solar wind turbulence have been limited. We conclude that the solar wind turbulence intervals observed by MMS show features of nonpropagating structures that are associated with frequencies close to zero in the plasma rest frame. However, there is no clear evidence of propagating Alfvén waves that have a nonzero rest-frame frequency. The lack of waves may be due to instrument noise and spacecraft separation. Our results support the idea of turbulence dominated by quasi-2D structures.more » « less
An official website of the United States government

