skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unveiling the Role of Termination Groups in Stabilizing MXenes in Contact with Water
MXenes are versatile 2D materials demonstrating outstanding electrochemical and physical properties, but their practical use is limited, because of fast degradation in an aqueous environment. To prevent the degradation of MXenes, it is essential to understand the atomistic details of the reaction and to identify active sites. In this letter, we provided a computational analysis of the degradation processes at the interface between MXene basal planes and water using enhanced sampling ab initio molecular dynamics simulations and symbolic regression analysis. Our results indicate that the reactivity of Ti sites toward the water attack reaction depends on both local coordination and chemical composition of the MXene surfaces. Decreasing the work function of the Ti3C2Tx surfaces and avoiding Ti sites that are loosely anchored to the subsurface (e.g., O-coordinated) can improve surface stability. The developed computational framework can be further used to investigate other possible culprits of the degradation reaction, including the role of defects and edges.  more » « less
Award ID(s):
2324156
PAR ID:
10531535
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
The Journal of Physical Chemistry Letters
Volume:
15
Issue:
13
ISSN:
1948-7185
Page Range / eLocation ID:
3698 to 3704
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. MXenes are a newer class of 2D materials, possess with desirable properties such as large specific surface area, conductivity, and hydrophilicity, making them attractive for various environmental applications, including remediation and as membranes for water treatment. Until recently, the practical implementation of MXenes was hindered by their instability in water, although improved synthesis procedures have largely addressed this issue. Consequently, it is now important to assess the stability of MXenes in engineered environments relevant to drinking water and membrane operation (e.g. backwashing). In this study, Ti3C2Tx MXenes were found to remain stable upon exposure to an aqueous environment saturated with oxygen and to UVC and UVA light at circumneutral pH, but were transformed upon exposure to Fe(III) chloride and free chlorine. The chlorination reaction kinetics are 1st order with respect to Ti3C2Tx and free chlorine concentration, with a rate constant that increased at pH ≤ 7.5, implicating HOCl as the reactive species. We propose that MXene reactions with HOCl occur by an electrophilic attack of Cl+, forming TiO2 and degrading the MXene. AFM data shows that transformations are initiated at the edges of the MXene sheets and localized areas on the MXene, suggesting that the initial sites for Cl+ attack are defect sites and/or uncoordinated Ti atoms. During the initial stages of the oxidative degradation, the sheet-like structure of colloidal MXenes is preserved, although prolonged chlorine exposure leads to three-dimensional crystalline (anatase) TiO2 formation. The degradation of MXenes during chlorinationThis contrasts with the inertness of nanoscale TiC, highlighting the need to devise surface modification processes that will allow MXenes to resist the oxidative conditions associated with membrane regeneration/backwashing. 
    more » « less
  2. Abstract MXenes, a family of 2D transition‐metal carbides and nitrides, have excellent electrical conductivity and unique optical properties. However, MXenes oxidize in ambient conditions, which is accelerated upon heating. Intercalation of water also causes hydrolysis accelerating oxidation. Developing new tools to readily characterize MXenes’ thermal stability can enable deeper insights into their structure–property relationships. Here, in situ spectroscopic ellipsometry (SE) is employed to characterize the optical properties of three types of MXenes (Ti3C2Tx, Mo2TiC2Tx, and Ti2CTx) with varied composition and atomistic structures to investigate their thermal degradation upon heating under ambient environment. It is demonstrated that changes in MXene extinction and optical conductivity in the visible and near‐IR regions correlate well with the amount of intercalated water and hydroxyl termination groups and the degree of oxidation, measured using thermogravimetric analysis. Among the three MXenes, Ti3C2Txand Ti2CTx, respectively, have the highest and lowest thermal stability, indicating the role of transition‐metal type, synthesis route, and the number of atomic layers in MXene flakes. These findings demonstrate the utility of SE as a powerful in situ technique for rapid structure–property relationship studies paving the way for the further design, fabrication, and property optimization of novel MXene materials. 
    more » « less
  3. MXenes have attracted considerable attention due to their tunable surface chemistry, high electrical conductivity, and ease of solution processing, making them promising candidates for a wide array of applications. The inherent tendency of MXenes to degrade under environmental conditions constrains their compositional diversity and limits certain practical applications. Our computational study shows that degradation of defect-free Ti3C2Tx is kinetically limited, whereas common defects markedly lower the activation barriers for water attack. Using ab initio molecular dynamics simulations (AIMD) combined with thermodynamic analysis, we show that titanium vacancies VTi act as active sites for the protonation of subsurface carbon atoms, weakening the bonds with and accelerating the release of adjacent Ti atoms. Targeted passivation of these sites by adsorbed metal cations (e.g., Li+, Na+, K+, and Mg2+) is predicted to effectively mitigate degradation by suppressing protonation and increasing the barrier for Ti oxidation. This stabilization arises from two synergistic effects: (i) electronic structure modification driven by a strong dipole moment, which markedly shifts the work function, and (ii) steric hindrance that limits water access to reactive defect sites. We also demonstrate that carbon vacancies VC significantly destabilize adjacent Ti atoms, lowering the energy barrier for the water attack reaction. The substitution of VC with electronegative species such as O or N does not significantly improve the stability of Ti3C2Tx, highlighting the detrimental role of any defects in the carbon sublattice. Because VC are typically inherited from the precursor phase and cannot be removed during postsynthesis, controlling their concentration during Mn+1AXn phases synthesis is essential. Our thermodynamic analysis reveals that A-rich (e.g., Al-rich) synthesis conditions substantially increase the formation energy of VC and VN defects in a large spectrum of Mn+1AXn phases, providing a generalizable strategy for defect suppression and improved durability of the resulting MXenes. 
    more » « less
  4. Abstract MXenes are a new family of two-dimensional carbides and/or nitrides. Their 2D surfaces are typically terminated by O, OH and/or F atoms. Here we show that Ti3C2Tx—the most studied compound of the MXene family—is a good acid catalyst, thanks to the surface acid functionalities. We demonstrate this by applying Ti3C2Txin the epoxide ring-opening reaction of styrene oxide (SO) and its isomerization in the liquid phase. Modifying the MXene surface changes the catalytic activity and selectivity. By oxidizing the surface, we succeeded in controlling the type and number of acid sites and thereby improving the yield of the mono-alkylated product to >80%. Characterisation studies show that a thin oxide layer, which forms directly on the Ti3C2Txsurface, is essential for catalysing the SO ring-opening. We hypothesize that two kinds of acid sites are responsible for this catalysis: In the MXene, strong acid sites (both Lewis and Brønsted) catalyse both the ring-opening and the isomerization reactions, while in the Mxene–TiO2composite weaker acid sites catalyse only the ring-opening reaction, increasing the selectivity to the mono-alkylated product. 
    more » « less
  5. Abstract The chemical stability of 2D MXene nanosheets in aqueous dispersions must be maintained to foster their widespread application. MXene nanosheets react with water, which results in the degradation of their 2D structure into oxides and carbon residues. The latter detrimentally restricts the shelf life of MXene dispersions and devices. However, the mechanism of MXene degradation in aqueous environment has yet to be fully understood. In this work, the oxidation kinetics is investigated of Ti3C2Txand Ti2CTxin aqueous media as a function of initial pH values, ionic strengths, and nanosheet concentrations. The pH value of the dispersion is found to change with time as a result of MXene oxidation. Specifically, MXene oxidation is accelerated in basic media by their reaction with hydroxyl anions. It is also demonstrated that oxidation kinetics are strongly dependent on nanosheet dispersion concentration, in which oxidation is accelerated for lower MXene concentrations. Ionic strength does not strongly affect MXene oxidation. The authors also report that citric acid acts as an effective antioxidant and mitigates the oxidation of both Ti3C2Txand Ti2CTxMXenes. Reactive molecular dynamic simulations suggest that citric acid associates with the nanosheet edge to hinder the initiation of oxidation. 
    more » « less