Abstract A fundamental prediction of the Lambda cold dark matter cosmology is the centrally divergent cuspy density profile of dark matter haloes. Density cusps render cold dark matter haloes resilient to tides, and protect dwarf galaxies embedded in them from full tidal disruption. The hierarchical assembly history of the Milky Way may therefore give rise to a population of “microgalaxies”; i.e., heavily stripped remnants of early accreted satellites, which can reach arbitrarily low luminosity. Assuming that the progenitor systems are dark matter dominated, we use an empirical formalism for tidal stripping to predict the evolution of the luminosity, size, and velocity dispersion of such remnants, tracing their tidal evolution across multiple orders of magnitude in mass and size. The evolutionary tracks depend sensitively on the progenitor distribution of stellar binding energies. We explore three cases that likely bracket most realistic models of dwarf galaxies: one where the energy distribution of the most tightly bound stars follows that of the dark matter, and two where stars are defined by either an exponential density or surface brightness profile. The tidal evolution in the size–velocity dispersion plane is quite similar for these three models, although their remnants may differ widely in luminosity. Microgalaxies are therefore best distinguished from globular clusters by the presence of dark matter; either directly, by measuring their velocity dispersion, or indirectly, by examining their tidal resilience. Our work highlights the need for further theoretical and observational constraints on the stellar energy distribution in dwarf galaxies.
more »
« less
Collisionless Relaxation from Near-equilibrium Configurations: Linear Theory and Application to Tidal Stripping
Abstract Placed slightly out of dynamical equilibrium, an isolated stellar system quickly returns toward a steady virialized state. We study this process of collisionless relaxation using the matrix method of linear response theory. We show that the full phase-space distribution of the final virialized state can be recovered directly from the disequilibrium initial conditions, without the need to compute the time evolution of the system. This shortcut allows us to determine the final virialized configuration with minimal computational effort. Complementing this result, we develop tools to model the system's full time evolution in the linear approximation. In particular, we show that moments of the velocity distribution can be efficiently computed using a generalized moment matrix. We apply our linear methods to study the relaxation of energy-truncated Hernquist spheres, mimicking the tidal stripping of a cuspy dark matter subhalo. Comparison of our linear predictions against controlled, isolatedN-body simulations shows agreement at percent level for the parts of the system where a linear response to the perturbation is expected. We find that relaxation generates a tangential velocity anisotropy in the intermediate regions, despite the initial disequilibrium state having isotropic kinematics. Our results also strengthen the case for relaxation depleting the amplitude of the density cusp, without affecting its asymptotic slope. Finally, we compare the linear theory against anN-body simulation of tidal stripping on a radial orbit, confirming that the theory still accurately predicts density and velocity dispersion profiles for most of the system.
more »
« less
- Award ID(s):
- 2206046
- PAR ID:
- 10531595
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 971
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 91
- Size(s):
- Article No. 91
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We describe the public release of the Cluster Monte Carlo (CMC) code, a parallel, star-by-starN-body code for modeling dense star clusters.CMCtreats collisional stellar dynamics using Hénon’s method, where the cumulative effect of many two-body encounters is statistically reproduced as a single effective encounter between nearest-neighbor particles on a relaxation timescale. The star-by-star approach allows for the inclusion of additional physics, including strong gravitational three- and four-body encounters, two-body tidal and gravitational-wave captures, mass loss in arbitrary galactic tidal fields, and stellar evolution for both single and binary stars. The public release ofCMCis pinned directly to theCOSMICpopulation synthesis code, allowing dynamical star cluster simulations and population synthesis studies to be performed using identical assumptions about the stellar physics and initial conditions. As a demonstration, we present two examples of star cluster modeling: first, we perform the largest (N= 108) star-by-starN-body simulation of a Plummer sphere evolving to core collapse, reproducing the expected self-similar density profile over more than 15 orders of magnitude; second, we generate realistic models for typical globular clusters, and we show that their dynamical evolution can produce significant numbers of black hole mergers with masses greater than those produced from isolated binary evolution (such as GW190521, a recently reported merger with component masses in the pulsational pair-instability mass gap).more » « less
-
Abstract The proton-cyclotron (PC) instability operates in various space plasma environments. In the literature, the so-called velocity moment-based quasi-linear theory is employed to investigate the physical process of PC instability that takes place after the onset of early linear exponential growth. In this method, the proton velocity distribution function (VDF) is assumed to maintain a bi-Maxwellian form for all time, which substantially simplifies the analysis, but its validity has not been rigorously examined by comparing against the actual solution of the kinetic equation. The present paper relaxes the assumption of the velocity moment-based quasi-linear theory by actually solving for the velocity space diffusion equation under the assumption of separable perpendicular and parallel VDFs, and upon comparison with the simplified velocity moment theory, it demonstrates that the simplified method is largely valid, despite the fact that the method slightly overemphasizes the relaxation of temperature anisotropy when the system is close to the marginally stable state. The overall validation is further confirmed with the results of particle-in-cell and hybrid-code simulations. The present paper thus provides a justification for making use of the velocity moment-based quasi-linear theory as an efficient first-cut theoretical tool for the PC instability.more » « less
-
We consider the problem of finite-horizon optimal control of a discrete linear time-varying system subject to a stochastic disturbance and fully observable state. The initial state of the system is drawn from a known Gaussian distribution, and the final state distribution is required to reach a given target Gaussian distribution, while minimizing the expected value of the control effort. We derive the linear optimal control policy by first presenting an efficient solution for the diffusion-less case, and we then solve the case with diffusion by reformulating the system as a superposition of diffusion-less systems. We show that the resulting solution coincides with a LQG problem with particular terminal cost weight matrix.more » « less
-
Abstract There is an intriguing and growing population of Neptune-sized planets with stellar obliquities near ∼90°. One previously proposed formation pathway is a disk-driven resonance, which can take place at the end stages of planet formation in a system containing an inner Neptune, outer cold Jupiter, and protoplanetary disk. This mechanism occurs within the first ∼10 Myr, but most of the polar Neptunes we see today are ∼Gyr old. Up until now, there has not been an extensive analysis of whether the polar orbits are stable over ∼Gyr timescales. Tidal realignment mechanisms are known to operate in other systems, and if they are active here, this would cause theoretical tension with a primordial misalignment story. In this paper, we explore the effects of tidal evolution on the disk-driven resonance theory. We use bothN-body and secular simulations to study tidal effects on both the initial resonant encounter and long-term evolution. We find that the polar orbits are remarkably stable on ∼Gyr timescales. Inclination damping does not occur for the polar cases, although we do identify subpolar cases where it is important. We consider two case study polar Neptunes, WASP-107 b and HAT-P-11 b, and study them in the context of this theory, finding consistency with present-day properties if their tidal quality factors areQ≳ 104andQ≳ 105, respectively.more » « less
An official website of the United States government
