skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-class Collaborative Learning Environment for Middle School Children: A Usability Study
Creating effective middle school STEM curricula requires a combination of individual and collaborative learning. Prior studies showed that finding a proper balance and providing uninterrupted knowledge transmission between different learning modes can be challenging in such mixed pedagogical approaches. In this paper, we present a multi-device interactive educational platform named SimSnap to teach biology curriculum to middle school children. SimSnap facilitates interactions among touchscreen Chromebooks to perform in-class individual and group activities. We present a usability analysis study with eight middle school children where they learn about the influence of temperature on tomato plant growth. Our study demonstrated that SimSnap facilitates group discussions to complete collaborative tasks. It also creates seamless knowledge propagation between prior to current tasks to learn about more complex concepts from previous simpler activities. Middle school children gave overall high usability ratings and positive feedback on SimSnap. This study also helped to outline some design recommendations for future improvements of SimSnap.  more » « less
Award ID(s):
2010357
PAR ID:
10531685
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IDC '23: Proceedings of the 22nd Annual ACM Interaction Design and Children Conference
Date Published:
ISSN:
XXXXXXXXXXX
ISBN:
979-8-4007-0131-3
Subject(s) / Keyword(s):
Collaborative learning classroom learning middle school STEM education multi-device interaction middle school children middle school biology curriculum
Format(s):
Medium: X
Location:
https://dl-acm-org.ezproxy.library.wisc.edu/doi/abs/10.1145/3585088.3593915
Sponsoring Org:
National Science Foundation
More Like this
  1. Creating effective middle school STEM curricula requires a combination of individual and collaborative learning. Prior studies showed that finding a proper balance and providing uninterrupted knowledge transmission between different learning modes can be challenging in such mixed pedagogical approaches. In this paper, we present a multi-device interactive educational platform named SimSnap to teach biology curriculum to middle school children. SimSnap facilitates interactions among touchscreen Chromebooks to perform in-class individual and group activities. We present a usability analysis study with eight middle school children where they learn about the influence of temperature on tomato plant growth. Our study demonstrated that SimSnap facilitates group discussions to complete collaborative tasks. It also creates seamless knowledge propagation between prior to current tasks to learn about more complex concepts from previous simpler activities. Middle school children gave overall high usability ratings and positive feedback on SimSnap. This study also helped to outline some design recommendations for future improvements of SimSnap. 
    more » « less
  2. Weinberger, A.; Chen, W.; Hernández-Leo, D.; & Chen, B. (Ed.)
    SimSnap responds to the need for a technology-based tool that supports learning at three social planes—individual, small group, and whole-class—while being easy to deploy with minimal technology overhead costs during their uptake. While much research has examined the efficacy of large-scale collaborative systems and individual-oriented learning systems, the intersection of and the movement between the three social planes is under explored. SimSnap is a cross-device, tablet-based platform that facilitates learning science concepts for middle school students through interactive simulations. Students in physical proximity can ‘snap’ their devices together to collaborate on learning activities. SimSnap enables real-time transition between individual and group activities in a classroom by offering reconfigurable simulations. SimSnap also provides an environment where open-ended and task-specific learning trajectories can be explored to maximize students’ learning potential. In this iteration of SimSnap, we have designed and implemented our first curriculum on SimSnap, focusing on plant biology, ecosystems, and genetics. 
    more » « less
  3. Weinberger, Armin; Chen, Wenli; Hernández-Leo, Davinia; & Chen, Bodong (Ed.)
    SimSnap responds to the need for a technology-based tool that supports learning at three social planes—individual, small group, and whole-class—while being easy to deploy with minimal technology overhead costs during their uptake. While much research has examined the efficacy of large-scale collaborative systems and individual-oriented learning systems, the intersection of and the movement between the three social planes is under explored. SimSnap is a cross-device, tablet-based platform that facilitates learning science concepts for middle school students through interactive simulations. Students in physical proximity can ‘snap’ their devices together to collaborate on learning activities. SimSnap enables real-time transition between individual and group activities in a classroom by offering reconfigurable simulations. SimSnap also provides an environment where open-ended and task-specific learning trajectories can be explored to maximize students’ learning potential. In this iteration of SimSnap, we have designed and implemented our first curriculum on SimSnap, focusing on plant biology, ecosystems, and genetics. 
    more » « less
  4. Parents’ beliefs about the importance of math predicts their math engagement with their children. However, most work focuses on mothers’ math engagement with preschool- and school-aged children, leaving gaps in knowledge about fathers and the experiences of toddlers. We examined differences in mothers’ and fathers’ ( N = 94) engagement in math- and non-math activities with their two-year-old girls and boys. Parents reported their beliefs about the importance of math and literacy for young children and their frequency of home learning activities. Parents of sons did not differ in their engagement in math activities from parents of daughters. Mothers reported engaging more frequently in math activities with their toddlers than fathers did, but the difference reduced when parents endorsed stronger beliefs about the importance of math for children. Even at very early ages, children experience vastly different opportunities to learn math in the home, with math-related experiences being shaped by both parent gender and parents’ beliefs. 
    more » « less
  5. Davidesco, Ido (Ed.)
    Reasoning about visual representations in science requires the ability to control one’s attention, inhibit attention to irrelevant or incorrect information, and hold information in mind while manipulating it actively—all aspects of the limited-capacity cognitive system described as humans’ executive functions. This article describes pedagogical intuitions on best practices for how to sequence visual representations among pre-service teachers, adult undergraduates, and middle school children, with learning also tested in the middle school sample. Interestingly, at all ages, most people reported beliefs about teaching others that were different from beliefs about how they would learn. Teaching beliefs were most often that others would learn better from presenting representations one at a time, serially; while learning beliefs were that they themselves would learn best from simultaneous presentations. Students did learn best from simultaneously presented representations of mitosis and meiosis, but only when paired with self-explanation prompts to discuss the relationships between the graphics. These results provide new recommendations for helping students draw connections across visual representations, particularly mitosis and meiosis, and suggest that science educators would benefit from shifting their teaching beliefs to align with beliefs about their own learning from multiple visual representations. 
    more » « less