Abstract The design of devices based on acoustic or optical fields requires the fabrication of cavities and structures capable of efficiently trapping these waves. A special type of cavity can be designed to support resonances with a theoretically infinite quality factor, named bound states in the continuum or BICs. The experimental measurement of such modes is still a challenging problem, as they are, by definition, not accessible from external perturbations. Here we report on the theoretical design and experimental realization of a two-dimensional, fully open acoustic resonator supporting BICs. This accidental BIC, whose symmetry is chosen during design by properly tailoring the geometrical properties of the system, is completely accessible and allows for the direct measurement of the whole pressure field and properties. We experimentally demonstrate its existence with high quality factor and field enhancement properties.
more »
« less
This content will become publicly available on December 1, 2025
Merging mechanical bound states in the continuum in high-aspect-ratio phononic crystal gratings
Abstract Mechanical bound states in the continuum (BICs) present an alternative avenue for developing high-frequency, high-Qmechanical resonators, distinct from the conventional band structure engineering method. While symmetry-protected mechanical BICs have been realized in phononic crystals, the observation of accidental mechanical BICs—whose existence is independent of mode symmetry and tunable by structural parameters—has remained elusive. This challenge is primarily attributed to the additional radiation channel introduced by the longitudinal component of elastic waves. Here, we employ a coupled wave theory to predict and experimentally demonstrate mechanical accidental BICs within a high-aspect-ratio gallium arsenide phononic crystal grating. We observe the merging process of accidental BICs with symmetry-protected BICs, resulting in reduced acoustic radiation losses compared to isolated BICs. This finding opens up new possibilities for phonon trapping using BIC-based systems, with potential applications in sensing, transduction, and quantum measurements.
more »
« less
- PAR ID:
- 10531872
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chipscale micro- and nano-optomechanical systems, hinging on the intangible radiation-pressure force, have shown their unique strength in sensing, signal transduction, and exploration of quantum physics with mechanical resonators. Optomechanical crystals, as one of the leading device platforms, enable simultaneous molding of the band structure of optical photons and microwave phonons with strong optomechanical coupling. Here, we demonstrate a new breed of optomechanical crystals in two-dimensional slab-on-substrate structures empowered by mechanical bound states in the continuum (BICs) at 8 GHz. We show symmetry-induced BIC emergence with optomechanical couplings up tog/2π≈ 2.5 MHz per unit cell, on par with low-dimensional optomechanical crystals. Our work paves the way towards exploration of photon-phonon interaction beyond suspended microcavities, which might lead to new applications of optomechanics from phonon sensing to quantum transduction.more » « less
-
Abstract Properties of photonic devices fashioned with dual‐grating metamaterials are reported. Enclosed by dual periodic regions, laterally propagating Bloch modes undergo radiative scattering and leaky‐mode resonance whose properties differ markedly from those with single periodicity. The resonance signatures are sensitively controlled by the relative parameters of the periodic regions. In particular, if they are physically identical and separated by a half‐wavelength, there ensues a bound state in the continuum (BIC) with extremely narrow resonance linewidth. On varying the separation between the periodic layers, the linewidth and correspondingQcan be tuned. This is confirmed experimentally via nanoimprinted dual‐grating membranes. The experimental spectra agree well with rigorously computed spectra as well with an analytical model due to Avrutsky. At grating‐depth and thickness values satisfying this model, three different types of BICs are supported by a single metamembrane. Two BICs appear at normal incidence at the Γ point with one being a quasi‐BIC on one band edge while a true symmetry‐protected BIC resides on the other edge. Moreover, a quasi‐BIC state away from the Γ point in the same device is demonstrated. Whereas these results are based on a simple model with 1D periodicity, the primary properties will carry over to general 2D/3D photonic lattices.more » « less
-
A substantial challenge in guiding elastic waves is the presence of reflection and scattering at sharp edges, defects, and disorder. Recently, mechanical topological insulators have sought to overcome this challenge by supporting back-scattering resistant wave transmission. In this paper, we propose and experimentally demonstrate a reconfigurable electroacoustic topological insulator exhibiting an analog to the quantum valley Hall effect (QVHE). Using programmable switches, this phononic structure allows for rapid reconfiguration of domain walls and thus the ability to control back-scattering resistant wave propagation along dynamic interfaces for phonons lying in static and finite-frequency regimes. Accordingly, a graphene-like polyactic acid (PLA) layer serves as the host medium, equipped with periodically arranged and bonded piezoelectric (PZT) patches, resulting in two Dirac cones at theKpoints. The PZT patches are then connected to negative capacitance external circuits to break inversion symmetry and create nontrivial topologically protected bandgaps. As such, topologically protected interface waves are demonstrated numerically and validated experimentally for different predefined trajectories over a broad frequency range.more » « less
-
Abstract The significance of bound states in the continuum (BICs) lies in their potential for theoretically infinite quality factors. However, their actual quality factors are limited by imperfections in fabrication, which lead to coupling with the radiation continuum. In this study, we present a novel approach to address this issue by introducing a merging BIC regime based on a Lieb lattice. By utilizing this approach, we effectively suppress the out-of-plane scattering loss, thereby enhancing the robustness of the structure against fabrication artifacts. Notably, unlike previous merging systems, our design does not rely on the up-down symmetry of metasurfaces. This characteristic grants more flexibility in applications that involve substrates and superstrates with different optical properties, such as microfluidic devices. Furthermore, we incorporate a lateral band gap mirror into the design to encapsulate the BIC structure. This mirror serves to suppress the in-plane radiation resulting from finite-size effects, leading to a remarkable ten-fold improvement in the quality factor. Consequently, our merged BIC metasurface, enclosed by the Lieb lattice photonic crystal mirror, achieves an exceptionally high-quality factor of 105while maintaining a small footprint of 26.6 × 26.6 μm. Our findings establish an appealing platform that capitalizes on the topological nature of BICs within compact structures. This platform holds great promise for various applications, including optical trapping, optofluidics, and high-sensitivity biodetection, opening up new possibilities in these fields.more » « less