Research on student learning in organic chemistry indicates that students tend to focus on surface level features of molecules with less consideration of implicit properties when engaging in mechanistic reasoning. Writing-to-learn (WTL) is one approach for supporting students’ mechanistic reasoning. A variation of WTL incorporates peer review and revision to provide opportunities for students to interact with and learn from their peers, as well as revisit and reflect on their own knowledge and reasoning. However, research indicates that the rhetorical features included in WTL assignments may influence the language students use in their responses. This study utilizes machine learning to characterize the mechanistic features present in second-semester undergraduate organic chemistry students’ responses to two versions of a WTL assignment with different rhetorical features. Furthermore, we examine the role of peer review on the mechanistic reasoning captured in students’ revised drafts. Our analysis indicates that students include both surface level and implicit features of mechanistic reasoning in their drafts and in the feedback to their peers, with slight differences depending on the rhetorical features present in the assignment. However, students’ revisions appeared to be primarily connected to the peer review process
This content will become publicly available on August 8, 2025
Peer review is useful for providing students with formative feedback, yet it is used less frequently in STEM classrooms and for supporting writing-to-learn (WTL). While research indicates the benefits of incorporating peer review into classrooms, less research is focused on students’ perceptions thereof. Such research is important as it speaks to the mechanisms whereby peer review can support learning. This study examines students’ self-reported approaches to and perceptions of peer review and revision associated with WTL assignments implemented in an organic chemistry course. Students responded to a survey covering how they approached peer review and revision and the benefits they perceived from participating in each. Findings indicate that the assignment materials guided students’ approaches during both peer review and revision. Furthermore, students described various ways both receiving feedback from their peers and reading their peers’ drafts were beneficial, but primarily connected their revisions to receiving feedback.
more » « less- Award ID(s):
- 2121123
- NSF-PAR ID:
- 10531903
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Written Communication
- ISSN:
- 0741-0883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Lewis, Scott (Ed.)
via the presence of surface features in the drafts students read (as opposed to the feedback received). These findings indicate that further scaffolding focused on how to utilize information gained from the peer review process (i.e. , both feedback received and drafts read) and emphasizing implicit properties could help support the utility of WTL for developing students’ mechanistic reasoning in organic chemistry. -
East, Martin ; Slomp, David (Ed.)Studies examining peer review demonstrate that students can learn from giving feedback to and receiving feedback from their peers, especially when they utilize information gained from the review process to revise. However, much of the research on peer review is situated within the literature regarding how students learn to write. With an increasing use of writing-to-learn in STEM classrooms, it is important to study how students engage in peer review for these types of writing assignments. This study sought to better understand how peer review and revision can support student learning for writing-to-learn specifically, using the lenses of cognitive perspectives of writing and engagement with written corrective feedback. Using a case study approach, we provide a detailed analysis of six students’ written artifacts in response to a writing-to-learn assignment that incorporated peer review and revision implemented in an organic chemistry course. Students demonstrated a range in the types of revisions they made and the extent to which the peer review process informed their revisions. Additionally, students exhibited surface, midlevel, and active engagement with the peer review and revision process. Considering the different engagement levels can inform how we frame peer review to students when using it as an instructional practice.more » « less
-
Hoadley, C ; Wang, XC (Ed.)In this paper, we present a case study of designing AI-human partnerships in a realworld context of science classrooms. We designed a classroom environment where AI technologies, teachers and peers worked synergistically to support students’ writing in science. In addition to an NLP algorithm to automatically assess students’ essays, we also designed (i) feedback that was easier for students to understand; (ii) participatory structures in the classroom focusing on reflection, peer review and discussion, and (iii) scaffolding by teachers to help students understand the feedback. Our results showed that students improved their written explanations, after receiving feedback and engaging in reflection activities. Our case study illustrates that Augmented Intelligence (USDoE, 2023), in which the strengths of AI complement the strengths of teachers and peers, while also overcoming the limitations of each, can provide multiple forms of support to foster learning and teaching.more » « less
-
Peer feedback is a central activity for project-based design education. The prevalence of devices carried by students and the emergence of novel peer feedback systems enables the possibility of collecting and sharing feedback immediately between students during class. However, pen and paper is thought to be more familiar, less distracting for students, and easier for instructors to implement and manage. To evaluate the efficacy of in-class digital feedback systems, we conducted a within-subjects study with 73 students during two weeks of a game design course. After short student presentations, while instructors provided verbal feedback, peers provided feedback either on paper or through a device. The study found that both methods yielded comments of similar quality and quantity, but the digital approach provided additional ways for students to participate and required less effort from the instructors. While both methods produced similar behaviors, students held inaccurate perceptions about their behavior with each method. We discuss design implications for technologies to support in-class feedback exchange.more » « less
-
Citizen science programs offer opportunities for K-12 students to engage in authentic science inquiry. However, these programs often fall short of including learners as agents in the entire process, and thus contrast with the growing open science movement within scientific communities. Notably, study ideation and peer review, which are central to the making of science, are typically reserved for professional scientists. This study describes the implementation of an open science curriculum that engages high school students in a full cycle of scientific inquiry. We explored the focus and quality of students’ study designs and peer reviews, and their perceptions of open science based on their participation in the program. Specifically, we implemented a human brain and behavior citizen science unit in 6 classrooms across 3 high schools. After learning about open science and citizen science, students (N = 104) participated in scientist-initiated research studies, and then collaboratively proposed their own studies to investigate personally interesting questions about human behavior and the brain. Students then peer reviewed proposals of students from other schools. Based on a qualitative and quantitative analysis of students’ artifacts created in-unit and on a pre and posttest, we describe their interests, abilities, and self-reported experiences with study design and peer review. Our findings suggest that participation in open science in a human brain and behavior research context can engage students with critical aspects of experiment design, as well as with issues that are unique to human subjects research, such as research ethics. Meanwhile, the quality of students’ study designs and reviews changed in notable, but mixed, ways: While students improved in justifying the importance of research studies, they did not improve in their abilities to align methods to their research questions. In terms of peer review, students generally reported that their peers' feedback was helpful, but our analysis showed that student reviewers struggled to articulate concrete recommendations for improvement. In light of these findings, we discuss the need for curricula that support the development of research and review abilities by building on students’ interests, while also guiding students in transferring these abilities across a range of research foci.more » « less