Abstract The recent Chandra-JWST discovery of a quasar in thez≈ 10.1 galaxy UHZ1 reveals that accreting supermassive black holes were already in place 470 million years after the Big Bang. The Chandra X-ray source detected in UHZ1 is a Compton-thick quasar with a bolometric luminosity ofLbol∼ 5 × 1045erg s−1, which corresponds to an estimated black hole (BH) mass of ∼4 × 107M⊙, assuming accretion at the Eddington rate. JWST NIRCAM and NIRSpec data yield a stellar mass estimate for UHZ1 comparable to its BH mass. These characteristics are in excellent agreement with prior theoretical predictions for a unique class of transient, high-redshift objects, overmassive black hole galaxies (OBGs) by Natarajan et al., that harbor a heavy initial black hole seed that likely formed from the direct collapse of the gas. Given the excellent agreement between the observed multiwavelength properties of UHZ1 and theoretical model template predictions, we suggest that UHZ1 is the first detected OBG candidate. Our assertion rests on multiple lines of concordant evidence between model predictions and the following observed properties of UHZ1: its X-ray detection and the estimated ratio of the X-ray flux to the IR flux, which is consistent with theoretical expectations for a heavy initial BH seed; its high measured redshift ofz≈ 10.1, as predicted for the transient OBG stage (9 <z< 12); the amplitude and shape of the detected JWST spectral energy distribution (SED) between 1 and 5μm, which is in very good agreement with simulated template SEDs for OBGs; and the extended JWST morphology of UHZ1, which is suggestive of a recent merge and is also expected for the formation of transient OBGs. As the first OBG candidate, UHZ1 provides compelling evidence for the formation of heavy initial seeds from direct collapse in the early Universe. 
                        more » 
                        « less   
                    
                            
                            A Strongly Lensed Dusty Starburst of an Intrinsic Disk Morphology at a Photometric Redshift of z ph > 7
                        
                    
    
            Abstract We present COSBO-7, a strong millimeter source known for more than 16 yr that just revealed its near-to-mid-IR counterpart with the James Webb Space Telescope (JWST). The precise pinpointing by the Atacama Large Millimeter/submillimeter Array on the exquisite NIRCam and MIRI images show that it is a background source gravitationally lensed by a single foreground galaxy, and the analysis of its spectral energy distribution by different tools is in favor of photometric redshift atzph> 7. Strikingly, our lens modeling based on the JWST data shows that it has a regular disk morphology in the source plane. The dusty region giving rise to the far-IR-to-millimeter emission seems to be confined to a limited region to one side of the disk and has a high dust temperature of >90 K. The galaxy is experiencing starburst both within and outside of this dusty region. After taking the lensing magnification ofμ≈ 2.5–3.6 into account, the intrinsic star formation rate is several hundredM⊙yr−1both within the dusty region and across the more extended stellar disk, and the latter already has >1010M⊙of stars in place. If it is indeed atz> 7, COSBO-7 presents an extraordinary case that is against the common wisdom about galaxy formation in the early Universe; simply put, its existence poses a critical question to be answered: how could a massive disk galaxy come into being so early in the Universe and sustain its regular morphology in the middle of an enormous starburst? 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307447
- PAR ID:
- 10531948
- Publisher / Repository:
- IOP Publishing for the American Astronomical Society
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 969
- Issue:
- 2
- ISSN:
- 2041-8205
- Page Range / eLocation ID:
- L28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Many quiescent galaxies discovered in the early Universe by JWST raise fundamental questions on when and how these galaxies became and stayed quenched. Making use of the latest version of the semianalytic model GAEA that provides good agreement with the observed quenched fractions up toz∼ 3, we make predictions for the expected fractions of quiescent galaxies up toz∼ 7 and analyze the main quenching mechanism. We find that in a simulated box of 685 Mpc on a side, the first quenched massive (M⋆∼ 1011M⊙), Milky Way–mass, and low-mass (M⋆∼ 109.5M⊙) galaxies appear atz∼ 4.5,z∼ 6.2, and beforez= 7, respectively. Most quenched galaxies identified at early redshifts remain quenched for more than 1 Gyr. Independently of galaxy stellar mass, the dominant quenching mechanism at high redshift is accretion disk feedback (quasar winds) from a central massive black hole, which is triggered by mergers in massive and Milky Way–mass galaxies and by disk instabilities in low-mass galaxies. Environmental stripping becomes increasingly more important at lower redshift.more » « less
- 
            Abstract We have used the Mid-InfraRed Instrument (MIRI) on the James Webb Space Telescope (JWST) to obtain the first spatially resolved, mid-infrared images ofIIZw096, a merging luminous infrared galaxy (LIRG) atz= 0.036. Previous observations with the Spitzer Space Telescope suggested that the vast majority of the total IR luminosity (LIR) of the system originated from a small region outside of the two merging nuclei. New observations with JWST/MIRI now allow an accurate measurement of the location and luminosity density of the source that is responsible for the bulk of the IR emission. We estimate that 40%–70% of the IR bolometric luminosity, or 3–5 × 1011L⊙, arises from a source no larger than 175 pc in radius, suggesting a luminosity density of at least 3–5 × 1012L⊙kpc−2. In addition, we detect 11 other star-forming sources, five of which were previously unknown. The MIRI F1500W/F560W colors of most of these sources, including the source responsible for the bulk of the far-IR emission, are much redder than the nuclei of local LIRGs. These observations reveal the power of JWST to disentangle the complex regions at the hearts of merging, dusty galaxies.more » « less
- 
            Abstract We present a new parametric lens model for the G165.7+67.0 galaxy cluster, which was discovered with Planck through its bright submillimeter flux, originating from a pair of extraordinary dusty star-forming galaxies (DSFGs) atz≈ 2.2. Using JWST and interferometric mm/radio observations, we characterize the intrinsic physical properties of the DSFGs, which are separated by only ∼1″ (8 kpc) and a velocity difference ΔV≲ 600 km s−1in the source plane, and thus are likely undergoing a major merger. Boasting intrinsic star formation rates SFRIR= 320 ± 70 and 400 ± 80M⊙yr−1, stellar masses of and 10.3 ± 0.1, and dust attenuations ofAV= 1.5 ± 0.3 and 1.2 ± 0.3, they are remarkably similar objects. We perform spatially resolved pixel-by-pixel spectral energy distribution (SED) fitting using rest-frame near-UV to near-IR imaging from JWST/NIRCam for both galaxies, resolving some stellar structures down to 100 pc scales. Based on their resolved specific star formation rates (SFRs) andUVJcolors, both DSFGs are experiencing significant galaxy-scale star formation events. If they are indeed interacting gravitationally, this strong starburst could be the hallmark of gas that has been disrupted by an initial close passage. In contrast, the host galaxy of SN H0pe has a much lower SFR than the DSFGs, and we present evidence for the onset of inside-out quenching and large column densities of dust even in regions of low specific SFR. Based on the intrinsic SFRs of the DSFGs inferred from UV through far-infrared SED modeling, this pair of objects alone is predicted to yield an observable 1.1 ± 0.2 core-collapse supernovae per year, making this cluster field ripe for continued monitoring.more » « less
- 
            Abstract We present a multiwavelength study of IC 860, a nearby post-starburst galaxy at the early stage of transitioning from blue and star forming to red and quiescent. Optical images reveal a galaxy-wide, dusty outflow originating from a compact core. We find evidence for a multiphase outflow in the molecular and neutral gas phase from the CO position–velocity diagram and NaD absorption features. We constrain the neutral mass outflow rate to be ∼0.5M⊙yr−1, and the total hydrogen mass outflow rate to be ∼12M⊙yr−1. Neither outflow component seems able to escape the galaxy. We also find evidence for a recent merger in the optical images, CO spatial distribution, and kinematics, and evidence for a buried active galactic nucleus in the optical emission line ratios, mid-IR properties, and radio spectral shape. The depletion time of the molecular gas reservoir under the current star formation rate is ∼7 Gyr, indicating that the galaxy could stay at the intermediate stage between the blue and red sequence for a long time. Thus the timescales for a significant decline in star formation rate (quenching) and gas depletion are not necessarily the same. Our analysis supports the quenching picture where outflows help suppress star formation by disturbing rather than expelling the gas and shed light on possible ongoing activities in similar quenching galaxies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    