skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Math in Motion: Analyzing Real-Time Student Collaboration in Computer-Supported Learning Environments
With the support of digital learning platforms, synchronous and collaborative learning has become a prominent learning paradigm in mathematics education. Computer-Supported Collaborative Learning (CSCL) has emerged as a valuable tool for enhancing mathematical discourse, problem solving, and ultimately learning outcomes. This paper presents an innovative examination of Graspable Math (GM), a dynamic mathematic notation and learning online platform, to enable synchronous, collaborative learning between pairs of students. Through analyzing students' online log data, we adopt a data-driven method to better understand the intricate dynamics of collaborative learning in mathematics as it happens. Specifically, we apply frequency distributions, cluster analysis to present students' dynamic interaction patterns and identify distinctive profiles of collaboration. Our findings reveal several collaboration profiles that emerge through these analyses. This research not only bridges the gap in current CSCL tools for mathematics, but also provides empirical insights into the effective design and implementation of such tools. The insights gained from this research offer implications for the design of digital learning tools that support effective and engaging collaborative learning experiences.  more » « less
Award ID(s):
2331379
PAR ID:
10531981
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Benjamin, Paaßen; Carrie, Demmans Epp
Publisher / Repository:
International Educational Data Mining Society
Date Published:
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Computer-Supported Collaborative Learning (CSCL) environments are often designed to support collaboration within a single digital platform. However, with the growth of technology in classrooms, students often find themselves working in multiple contexts (i.e., a student might work face-to-face with a peer on one task and then move to engaging in an online discussion for homework). We have created a CSCL environment that aims to support student help-giving across a variety of digital platforms. This paper describes three cycles of a design-based research study that aims to design a system to support help-giving and improve interaction quantity and quality across different contexts as well as to better understand whether students benefit by the addition of multiple contexts. The paper shares major refinements across the three cycles that worked to balance research, pedagogical, and technological goals to improve students’ help-giving behavior in a middle-school mathematics classroom. 
    more » « less
  2. Computer-aided simulation-based platforms have been shown to be effective tools for teaching STEM concepts. At the same time, Computer Supported Collaborative Learning (CSCL) platforms encourage different viewpoints and approaches from the learners which can enrich the learning experience in STEM classrooms. The deployment in recent years of networked personal devices such as Chromebooks in classrooms has motivated educators to design collaborative learning tools for these devices. However, prior work has shown that using one-on-one devices may discourage students from talking among each other, which hinders collaboration. To understand the affordances of personal devices for CSCL tools within Biology curricula, we designed a collaborative plant growth simulation application that provides mirrored plant growth simulation views for every group member to facilitate a common visualization. In this paper, we present our findings from an in-the-wild study that evaluated the affordance and usability of the plant growth simulation application and investigated the nature of collaboration and engagement aided through the simulation mirroring feature. Our study results showed that the plant simulation application had high usability and acceptance. Moreover, mirroring the plant growth simulation improved collaboration, generated excitement, and stimulated conversation. We also identified episodes where collaboration was hindered due to off-task activities, troubleshooting, group dynamics, and lack of understanding that led us to outline some potential guidelines to improve the collaborative learning experience for the students in Biology classroom. 
    more » « less
  3. We examined how Idea Wall, a collaboration spatially manipulable interactive note tool, supports collaborative scientific reasoning among students. Through a design-based research approach, the study also aims to identify potential improvements to the tool that can better support collaborative interactions. The Idea Wall has the ability to facilitate spatial manipulation and interactive note-taking supported student engagement and collaboration. This paper contributes to the growing body of research on the use of interactive tools to enhance scientific reasoning skills in collaborative learning environments. By researching the affordances and challenges of the tool, this study provides valuable insights into the design considerations and potential improvements of such tools in building new norms of collaborative discussion for a knowledge community. 
    more » « less
  4. This paper explores the potential of online lesson visualization and annotation tools in fostering international lesson-centered teacher collaboration. In an era where teachers face diverse challenges and limited opportunities for peer-to-peer collaboration, leveraging digital tools for asynchronous exchanges emerges as a promising avenue for professional development. This paper will illustrate the potential of emerging technologies for supporting cross-cultural exchanges in which teachers can share insights, perspectives, and innovative practices in durable and archivable forms, thereby enriching the collective knowledge base for teaching. We share data from an ongoing project focused on engaging groups of secondary mathematics teachers in collectively refining a single storyboarded lesson. Through collaborative lesson development and iterative refinement, we illustrate how these tools transcend temporal and spatial constraints by sharing data gathered from three different groups involved in cross-cultural exchange (one situated in the western part of the U.S, one situated in the eastern part of the U.S., and one situated in Bulgaria) centered on storyboard representation of a lesson. In this way, we provide insights on how the lean graphics of the storyboard and the asynchronous nature of annotation can foster a culture of continuous improvement and mutual support among mathematics teachers spread over large geographic distances. Ultimately, we advocate for the widespread adoption of online multimedia authoring tools as integral components of contemporary approaches to cross-cultural collaboration on lessons for facilitating meaningful exchanges and promoting excellence in teaching and learning on a global scale 
    more » « less
  5. Learning mathematics in a student-centered, problem-based classroom requires students to develop mathematical understanding and reasoning collaboratively with others. Despite its critical role in students’ collaborative learning in groups and classrooms, evidence of student thinking has rarely been perceived and utilized as a resource for planning and teaching. This is in part because teachers have limited access to student work in paper-and-pencil classrooms. As an alternative approach to making student thinking visible and accessible, a digital collaborative platform embedded with a problem-based middle school mathematics curriculum is developed through an ongoing design-based research project (Edson & Phillips, 2021). Drawing from a subset of data collected for the larger research project, we investigated how students generated mathematical inscriptions during small group work, and how teachers used evidence of students’ solution strategies inscribed on student digital workspaces. Findings show that digital flexibility and mobility allowed students to easily explore different strategies and focus on developing mathematical big ideas, and teachers to foreground student thinking when facilitating whole-class discussions and planning for the next lesson. This study provides insights into understanding mathematics teachers’ interactions with digital curriculum resources in the pursuit of students’ meaningful engagement in making sense of mathematical ideas. 
    more » « less