Computer-Supported Collaborative Learning (CSCL) environments are often designed to support collaboration within a single digital platform. However, with the growth of technology in classrooms, students often find themselves working in multiple contexts (i.e., a student might work face-to-face with a peer on one task and then move to engaging in an online discussion for homework). We have created a CSCL environment that aims to support student help-giving across a variety of digital platforms. This paper describes three cycles of a design-based research study that aims to design a system to support help-giving and improve interaction quantity and quality across different contexts as well as to better understand whether students benefit by the addition of multiple contexts. The paper shares major refinements across the three cycles that worked to balance research, pedagogical, and technological goals to improve students’ help-giving behavior in a middle-school mathematics classroom.
more »
« less
This content will become publicly available on July 14, 2025
Math in Motion: Analyzing Real-Time Student Collaboration in Computer-Supported Learning Environments
With the support of digital learning platforms, synchronous and collaborative learning has become a prominent learning paradigm in mathematics education. Computer-Supported Collaborative Learning (CSCL) has emerged as a valuable tool for enhancing mathematical discourse, problem solving, and ultimately learning outcomes. This paper presents an innovative examination of Graspable Math (GM), a dynamic mathematic notation and learning online platform, to enable synchronous, collaborative learning between pairs of students. Through analyzing students' online log data, we adopt a data-driven method to better understand the intricate dynamics of collaborative learning in mathematics as it happens. Specifically, we apply frequency distributions, cluster analysis to present students' dynamic interaction patterns and identify distinctive profiles of collaboration. Our findings reveal several collaboration profiles that emerge through these analyses. This research not only bridges the gap in current CSCL tools for mathematics, but also provides empirical insights into the effective design and implementation of such tools. The insights gained from this research offer implications for the design of digital learning tools that support effective and engaging collaborative learning experiences.
more »
« less
- Award ID(s):
- 2331379
- PAR ID:
- 10531981
- Editor(s):
- Benjamin, Paaßen; Carrie, Demmans Epp
- Publisher / Repository:
- International Educational Data Mining Society
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Computer-aided simulation-based platforms have been shown to be effective tools for teaching STEM concepts. At the same time, Computer Supported Collaborative Learning (CSCL) platforms encourage different viewpoints and approaches from the learners which can enrich the learning experience in STEM classrooms. The deployment in recent years of networked personal devices such as Chromebooks in classrooms has motivated educators to design collaborative learning tools for these devices. However, prior work has shown that using one-on-one devices may discourage students from talking among each other, which hinders collaboration. To understand the affordances of personal devices for CSCL tools within Biology curricula, we designed a collaborative plant growth simulation application that provides mirrored plant growth simulation views for every group member to facilitate a common visualization. In this paper, we present our findings from an in-the-wild study that evaluated the affordance and usability of the plant growth simulation application and investigated the nature of collaboration and engagement aided through the simulation mirroring feature. Our study results showed that the plant simulation application had high usability and acceptance. Moreover, mirroring the plant growth simulation improved collaboration, generated excitement, and stimulated conversation. We also identified episodes where collaboration was hindered due to off-task activities, troubleshooting, group dynamics, and lack of understanding that led us to outline some potential guidelines to improve the collaborative learning experience for the students in Biology classroom.more » « less
-
We examined how Idea Wall, a collaboration spatially manipulable interactive note tool, supports collaborative scientific reasoning among students. Through a design-based research approach, the study also aims to identify potential improvements to the tool that can better support collaborative interactions. The Idea Wall has the ability to facilitate spatial manipulation and interactive note-taking supported student engagement and collaboration. This paper contributes to the growing body of research on the use of interactive tools to enhance scientific reasoning skills in collaborative learning environments. By researching the affordances and challenges of the tool, this study provides valuable insights into the design considerations and potential improvements of such tools in building new norms of collaborative discussion for a knowledge community.more » « less
-
null (Ed.)Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, a teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context.more » « less
-
Abstract The COVID‐19 pandemic forced educators to teach in an online environment. This was particularly challenging for those teaching courses that are intended to support bench science research. This practitioner article tells the story of how an instructor transformed their Course‐based Undergraduate Research Experience (CURE) using the Backwards Design Method into a synchronous online course. Research objectives in this transformed course included: conducting a literature review, identifying research questions and hypotheses based on literature, and developing practical and appropriate research methodologies to test these hypotheses. We provide details on how assignments were created to walk students through the process of research study design and conclude with recommendations for the implementation of an online CURE. Recommendations made by the instructor include scaffolding the design, building opportunities for collaboration, and allowing students to fail in order to teach the value of iteration. The Backwards Design framework naturally lends itself to a scaffolded instructional approach. By identifying the learning objectives and final assessment, the learning activities can be designed to help students overcome difficult concepts by filling in the gaps with purposeful instruction and collaborative opportunities. This present course also practiced iteration through the extensive feedback offered by the instructor and opportunities for students to revise their work as their understanding deepened. Anecdotally, based on end of course reviews, students overall had a positive experience with this course. Future work will examine the efficacy of student learning in this online environment and is forthcoming.more » « less