skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using Design-Based Research to Improve Peer Help-Giving in a Middle School Math Classroom
Computer-Supported Collaborative Learning (CSCL) environments are often designed to support collaboration within a single digital platform. However, with the growth of technology in classrooms, students often find themselves working in multiple contexts (i.e., a student might work face-to-face with a peer on one task and then move to engaging in an online discussion for homework). We have created a CSCL environment that aims to support student help-giving across a variety of digital platforms. This paper describes three cycles of a design-based research study that aims to design a system to support help-giving and improve interaction quantity and quality across different contexts as well as to better understand whether students benefit by the addition of multiple contexts. The paper shares major refinements across the three cycles that worked to balance research, pedagogical, and technological goals to improve students’ help-giving behavior in a middle-school mathematics classroom.  more » « less
Award ID(s):
1912044
PAR ID:
10173159
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Conference of the Learning Sciences
Page Range / eLocation ID:
1189-1196
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the growing integration of technology in the classrooms, learners can now develop collaboration skills by applying them across diverse contexts. While this represents a great opportunity, it also brings challenges due to an increased need to support individual learners across multiple learning activities. We propose a technology-enhanced learning ecosystem called UbiCoS that supports learner help-giving during face-to-face collaboration and across three different digital learning environments: an interactive digital textbook, an online Q&A forum, and a teachable agent. In this paper, we present a first step in the development of UbiCoS: five co-design sessions with 16 learners that give insight into learners’ perceptions of help-giving. The findings provided us with technology-related and curriculum-related design opportunities for facilitating learner interaction across multiple platforms. 
    more » « less
  2. A key promise of adaptive collaborative learning support is the ability to improve learning outcomes by providing individual students with the help they need to collaborate more effectively. These systems have focused on a single platform. However, recent technology-supported collaborative learning platforms allow students to collaborate in different contexts: computer-supported classroom environments, network based online learning environments, or virtual learning environments with pedagogical agents. Our goal is to better understand how students participate in collaborative behaviors across platforms, focusing on a specific type of collaboration - help-giving. We conducted a classroom study (N = 20) to understand how students engage in help-giving across two platforms: an interactive digital learning environment and an online Q&A community. The results indicate that help-giving behavior across the two platforms is mostly influenced by the context rather than by individual differences. We discuss the implications of the results and suggest design recommendations for developing an adaptive collaborative learning support system that promotes learning and transfer. 
    more » « less
  3. As artificial intelligence (AI) increasingly enters K-12 classrooms, what do teachers and students see as the roles of human versus AI instruction, and how might educational AI (AIED) systems best be designed to support these complementary roles? We explore these questions through participatory design and needs validation studies with K-12 teachers and students. Using human-centered design methods rarely employed in AIED research, this work builds on prior findings to contribute: (1) an analysis of teacher and student feedback on 24 design concepts for systems that integrate human and AI instruction; and (2) participatory speed dating (PSD): a new variant of the speed dating design method, involving iterative concept generation and evaluation with multiple stakeholders. Using PSD, we found that teachers desire greater real-time support from AI tutors in identifying when students need human help, in evaluating the impacts of their own help-giving, and in managing student motivation. Meanwhile, students desire better mechanisms to signal help-need during class without losing face to peers, to receive emotional support from human rather than AI tutors, and to have greater agency over how their personal analytics are used. This work provides tools and insights to guide the design of more effective human–AI partnerships for K-12 education. 
    more » « less
  4. Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)
    With the support of digital learning platforms, synchronous and collaborative learning has become a prominent learning paradigm in mathematics education. Computer-Supported Collaborative Learning (CSCL) has emerged as a valuable tool for enhancing mathematical discourse, problem solving, and ultimately learning outcomes. This paper presents an innovative examination of Graspable Math (GM), a dynamic mathematic notation and learning online platform, to enable synchronous, collaborative learning between pairs of students. Through analyzing students' online log data, we adopt a data-driven method to better understand the intricate dynamics of collaborative learning in mathematics as it happens. Specifically, we apply frequency distributions, cluster analysis to present students' dynamic interaction patterns and identify distinctive profiles of collaboration. Our findings reveal several collaboration profiles that emerge through these analyses. This research not only bridges the gap in current CSCL tools for mathematics, but also provides empirical insights into the effective design and implementation of such tools. The insights gained from this research offer implications for the design of digital learning tools that support effective and engaging collaborative learning experiences. 
    more » « less
  5. null (Ed.)
    Over the past two decades, educators have used computer-supported collaborative learning (CSCL) to integrate technology with pedagogy to improve student engagement and learning outcomes. Researchers have also explored the diverse affordances of CSCL, its contributions to engineering instruction, and its effectiveness in K-12 STEM education. However, the question of how students use CSCL resources in undergraduate engineering classrooms remains largely unexplored. This study examines the affordances of a CSCL environment utilized in a sophomore dynamics course with particular attention given to the undergraduate engineering students’ use of various CSCL resources. The resources include a course lecturebook, instructor office hours, a teaching assistant help room, online discussion board, peer collaboration, and demonstration videos. This qualitative study uses semi-structured interview data collected from nine mechanical engineering students (four women and five men) who were enrolled in a dynamics course at a large public research university in Eastern Canada. The interviews focused on the individual student’s perceptions of the school, faculty, students, engineering courses, and implemented CSCL learning environment. The thematic analysis was conducted to analyze the transcribed interviews using a qualitative data analysis software (Nvivo). The analysis followed a six step process: (1) reading interview transcripts multiple times and preliminary in vivo codes; (2) conducting open coding by coding interesting or salient features of the data; (3) collecting codes and searching for themes; (4) reviewing themes and creating a thematic map; (5) finalizing themes and their definitions; and (6) compiling findings. This study found that the students’ use of CSCL resources varied depending on the students’ personal preferences, as well as their perceptions of the given resource’s value and its potential to enhance their learning. For example, the dynamics lecturebook, which had been redesigned to encourage problem solving and note-taking, fostered student collaborative problem solving with their peers. In contrast, the professor’s example video solutions had much more of an influence on students’ independent problem-solving processes. The least frequently used resource was the course’s online discussion forum, which could be used as a means of communication. The findings reveal how computer-supported collaborative learning (CSCL) environments enable engineering students to engage in multiple learning opportunities with diverse and flexible resources to both address and to clarify their personal learning needs. This study strongly recommends engineering instructors adapt a CSCL environment for implementation in their own unique classroom context. 
    more » « less