Ever since the discovery of the charge density wave (CDW) transition in the kagome metal, the nature of its symmetry breaking has been under intense debate. While evidence suggests that the rotational symmetry is already broken at the CDW transition temperature (), an additional electronic nematic instability well belowhas been reported based on the diverging elastoresistivity coefficient in the anisotropic channel (). Verifying the existence of a nematic transition belowis not only critical for establishing the correct description of the CDW order parameter, but also important for understanding low-temperature superconductivity. Here, we report elastoresistivity measurements ofusing three different techniques probing both isotropic and anisotropic symmetry channels. Contrary to previous reports, we find the anisotropic elastoresistivity coefficientis temperature independent, except for a step jump at. The absence of nematic fluctuations is further substantiated by measurements of the elastocaloric effect, which show no enhancement associated with nematic susceptibility. On the other hand, the symmetric elastoresistivity coefficientincreases below, reaching a peak value of 90 at. Our results strongly indicate that the phase transition atis not nematic in nature and the previously reported diverging elastoresistivity is due to the contamination from thechannel.
This content will become publicly available on August 1, 2025
First-order phase transitions produce abrupt changes to the character of both ground and excited electronic states. Here we conduct electronic compressibility measurements to map the spin phase diagram and Landau level (LL) energies of monolayerin a magnetic field. We resolve a sequence of first-order phase transitions between completely spin-polarized LLs and states with LLs of both spins. Unexpectedly, the LL gaps are roughly constant over a wide range of magnetic fields below the transitions, which we show reflects spin-polarized ground states with opposite spin excitations. These transitions also extend into compressible regimes, with a sawtooth boundary between full and partial spin polarization. We link these observations to the important influence of LL filling on the exchange energy beyond a smooth density-dependent contribution. Our results show thatrealizes a unique hierarchy of energy scales where such effects induce reentrant magnetic phase transitions tuned by density and magnetic field.
- Award ID(s):
- 2103910
- PAR ID:
- 10532103
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Published by the American Physical Society 2024 -
Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample ofproton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at theboson mass:, the most precisevalue obtained using jet substructure observables.
© 2024 CERN, for the CMS Collaboration 2024 CERN -
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high) hadron trigger in proton-proton and central Pb-Pb collisions at. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter, 0.4, and 0.5 in the rangeand trigger-recoil jet azimuthal separation. The measurements exhibit a marked medium-induced jet yield enhancement at lowand at large azimuthal deviation from. The enhancement is characterized by its dependence on, which has a slope that differs from zero by. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation.
© 2024 CERN, for the ALICE Collaboration 2024 CERN -
Superconducting nickelates are a new family of strongly correlated electron materials with a phase diagram closely resembling that of superconducting cuprates. While analogy with the cuprates is natural, very little is known about the metallic state of the nickelates, making these comparisons difficult. We probe the electronic dispersion of thin-film superconducting five-layer () and metallic three-layer () nickelates by measuring the Seebeck coefficient. We find a temperature-independent and negativefor bothandnickelates. These results are in stark contrast to the strongly temperature-dependentmeasured at similar electron filling in the cuprate. The electronic structure calculated from density-functional theory can reproduce the temperature dependence, sign, and amplitude ofin the nickelates using Boltzmann transport theory. This demonstrates that the electronic structure obtained from first-principles calculations provides a reliable description of the fermiology of superconducting nickelates and suggests that, despite indications of strong electronic correlations, there are well-defined quasiparticles in the metallic state. Finally, we explain the differences in the Seebeck coefficient between nickelates and cuprates as originating in strong dissimilarities in impurity concentrations. Our study demonstrates that the high elastic scattering limit of the Seebeck coefficient reflects only the underlying band structure of a metal, analogous to the high magnetic field limit of the Hall coefficient. This opens a new avenue for Seebeck measurements to probe the electronic band structures of relatively disordered quantum materials.
Published by the American Physical Society 2024 -
We present details on a new measurement of the muon magnetic anomaly,. The result is based on positive muon data taken at Fermilab’s Muon Campus during the 2019 and 2020 accelerator runs. The measurement usespolarized muons stored in a 7.1-m-radius storage ring with a 1.45 T uniform magnetic field. The value ofis determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using nuclear magnetic resonance. The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure(0.21 ppm). This is the world’s most precise measurement of this quantity and represents a factor of 2.2 improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield(0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is(0.19 ppm).
Published by the American Physical Society 2024