Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of . The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the boson mass: , the most precise value obtained using jet substructure observables. © 2024 CERN, for the CMS Collaboration2024CERN
more »
« less
This content will become publicly available on February 1, 2026
Layer-Dependent Charge-State Lifetime of Single Se Vacancies in WSe2
Defect engineering in two-dimensional semiconductors has been exploited to tune the optoelectronic properties and introduce new quantum states in the band gap. Chalcogen vacancies in transition metal dichalcogenides in particular have been found to strongly impact charge carrier concentration and mobility in 2D transistors as well as feature subgap emission and single-photon response. In this Letter, we investigate the layer-dependent charge-state lifetime of Se vacancies in . In one monolayer , we observe ultrafast charge transfer from the lowest unoccupied orbital of the top Se vacancy to the graphene substrate within measured via the current saturation in scanning tunneling approach curves. For Se vacancies decoupled by transition metal dichalcogenide (TMD) multilayers, we find a subexponential increase of the charge lifetime from in bilayer to a few nanoseconds in four-layer , alongside a reduction of the defect state binding energy. Additionally, we attribute the continuous suppression and energy shift of the in-gap defect state resonances at very close tip-sample distances to a current saturation effect. Our results provide a key measure of the layer-dependent charge transfer rate of chalcogen vacancies in TMDs. Published by the American Physical Society2025
more »
« less
- PAR ID:
- 10584844
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 134
- Issue:
- 7
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The decay chains are observed, and the spin-parity of baryons is determined for the first time. The measurement is performed using proton-proton collision data at a center-of-mass energy of , corresponding to an integrated luminosity of , recorded by the LHCb experiment between 2016 and 2018. The spin-parity of the baryons is determined to be with a significance of more than ( ) compared to all other tested hypotheses. The up-down asymmetries of the transitions are measured to be ( ), consistent with maximal parity violation, where the first uncertainty is statistical and the second is systematic. These results support the hypothesis that the baryons correspond to the first -wave -mode excitation of the flavor triplet. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
We measure the complete set of angular coefficients for exclusive decays ( , ). Our analysis uses the full Belle dataset with hadronic tag-side reconstruction. The results allow us to extract the form factors describing the transition and the Cabibbo-Kobayashi-Maskawa matrix element . Using recent lattice QCD calculations for the hadronic form factors, we find using the Boyd-Grinstein-Lebed parametrization, compatible with determinations from inclusive semileptonic decays. We search for lepton flavor universality violation as a function of the hadronic recoil parameter and investigate the differences of the electron and muon angular distributions. We find no deviation from standard model expectations. Published by the American Physical Society2024more » « less
-
In the bottomonium sector, the hindered magnetic dipole transitions between P-wave states , , 1, 2, are expected to be severely suppressed according to the relativized quark model, due to the spin flip of the quark. Nevertheless, a recent model following the coupled-channel approach predicts the corresponding branching fractions to be enhanced by orders of magnitude. In this Letter, we report the first search for such transitions. We find no significant signals and set upper limits at 90% confidence level on the corresponding branching fractions: , and . These values help to constrain the parameters of the coupled-channel models. The results are obtained using a data sample taken around with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2025more » « less
-
We measure the tau-to-light-lepton ratio of inclusive -meson branching fractions , where indicates an electron or muon, and thereby test the universality of charged-current weak interactions. We select events that have one fully reconstructed meson and a charged lepton candidate from of electron-positron collision data collected with the Belle II detector. We find , in agreement with standard-model expectations. This is the first direct measurement of . Published by the American Physical Society2024more » « less
An official website of the United States government
