skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global sensitivity analysis with multifidelity Monte Carlo and polynomial chaos expansion for vascular haemodynamics
Abstract Computational models of the cardiovascular system are increasingly used for the diagnosis, treatment, and prevention of cardiovascular disease. Before being used for translational applications, the predictive abilities of these models need to be thoroughly demonstrated through verification, validation, and uncertainty quantification. When results depend on multiple uncertain inputs, sensitivity analysis is typically the first step required to separate relevant from unimportant inputs, and is key to determine an initial reduction on the problem dimensionality that will significantly affect the cost of all downstream analysis tasks. For computationally expensive models with numerous uncertain inputs, sample‐based sensitivity analysis may become impractical due to the substantial number of model evaluations it typically necessitates. To overcome this limitation, we consider recently proposed Multifidelity Monte Carlo estimators for Sobol’ sensitivity indices, and demonstrate their applicability to an idealized model of the common carotid artery. Variance reduction is achieved combining a small number of three‐dimensional fluid–structure interaction simulations with affordable one‐ and zero‐dimensional reduced‐order models. These multifidelity Monte Carlo estimators are compared with traditional Monte Carlo and polynomial chaos expansion estimates. Specifically, we show consistent sensitivity ranks for both bi‐ (1D/0D) and tri‐fidelity (3D/1D/0D) estimators, and superior variance reduction compared to traditional single‐fidelity Monte Carlo estimators for the same computational budget. As the computational burden of Monte Carlo estimators for Sobol’ indices is significantly affected by the problem dimensionality, polynomial chaos expansion is found to have lower computational cost for idealized models with smooth stochastic response.  more » « less
Award ID(s):
2104831
PAR ID:
10532148
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Biomedical Engineering
Volume:
40
Issue:
8
ISSN:
2040-7939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Global sensitivity analysis aims at quantifying and ranking the relative contribution of all the uncertain inputs of a mathematical model that impact the uncertainty in the output of that model, for any input-output mapping. Motivated by the limitations of the well-established Sobol' indices which are variance-based, there has been an interest in the development of non-moment-based global sensitivity metrics. This paper presents two complementary classes of metrics (one of which is a generalization of an already existing metric in the literature) which are based on the statistical distances between probability distributions rather than statistical moments. To alleviate the large computational cost associated with Monte Carlo sampling of the input-output model to estimate probability distributions, polynomial chaos surrogate models are proposed to be used. The surrogate models in conjunction with sparse quadrature-based rules, such as conjugate unscented transforms, permit efficient calculation of the proposed global sensitivity measures. Three benchmark sensitivity analysis examples are used to illustrate the proposed approach. 
    more » « less
  2. Uncertainty propagation methods are used to estimate the distribution of model outputs resulting from a set of uncertain model outputs. There are a number of uncertainty propagation methods available in literature. This paper compares six non-intrusive uncertainty propagation methods, Latin Hypercube Sampling, Full Factorial Integration, Univariate Dimension Reduction, Halton series, Sobol series, and Polynomial Chaos Expansion, in terms of their efficiency for estimating the first four moments of the output distribution using computational experiments. The results suggest employing FFNI if there are few uncertain inputs, up to three. Uncertainty propagation methods that utilize Halton and Sobol series are found to be robust for estimating output moments as the number of uncertain inputs increased. In general, higher order polynomial chaos expansion approximations (3rd-5th order) obtained accurate estimates of model outputs with fewer model evaluations. 
    more » « less
  3. The focus of this paper is on the global sensitivity analysis (GSA) of linear systems with time-invariant model parameter uncertainties and driven by stochastic inputs. The Sobol' indices of the evolving mean and variance estimates of states are used to assess the impact of the time-invariant uncertain model parameters and the statistics of the stochastic input on the uncertainty of the output. Numerical results on two benchmark problems help illustrate that it is conceivable that parameters, which are not so significant in contributing to the uncertainty of the mean, can be extremely significant in contributing to the uncertainty of the variances. The paper uses a polynomial chaos (PC) approach to synthesize a surrogate probabilistic model of the stochastic system after using Lagrange interpolation polynomials (LIPs) as PC bases. The Sobol' indices are then directly evaluated from the PC coefficients. Although this concept is not new, a novel interpretation of stochastic collocation-based PC and intrusive PC is presented where they are shown to represent identical probabilistic models when the system under consideration is linear. This result now permits treating linear models as black boxes to develop intrusive PC surrogates. 
    more » « less
  4. Risk assessment of power system failures induced by low-frequency, high-impact rare events is of paramount importance to power system planners and operators. In this paper, we develop a cost-effective multi-surrogate method based on multifidelity model for assessing risks in probabilistic power-flow analysis under rare events. Specifically, multiple polynomial-chaos-expansion-based surrogate models are constructed to reproduce power system responses to the stochastic changes of the load and the random occurrence of component outages. These surrogates then propagate a large number of samples at negligible computation cost and thus efficiently screen out the samples associated with high-risk rare events. The results generated by the surrogates, however, may be biased for the samples located in the low-probability tail regions that are critical to power system risk assessment. To resolve this issue, the original high-fidelity power system model is adopted to fine-tune the estimation results of low-fidelity surrogates by reevaluating only a small portion of the samples. This multifidelity model approach greatly improves the computational efficiency of the traditional Monte Carlo method used in computing the risk-event probabilities under rare events without sacrificing computational accuracy. 
    more » « less
  5. Global sensitivity analysis (GSA) of distribution system with respect to stochastic PV variations plays an important role in designing optimal voltage control schemes. This paper proposes a Kriging, i.e., Gaussian process modeling enabled data-driven GSA method. The key idea is to develop a surrogate model that captures the hidden global relationship between voltage and real and reactive power injections from the historical data. With the surrogate model, the Sobol index can be conveniently calculated to assess the global sensitivity of voltage to various power injection variations. Comparison results with other model-based GSA methods on the IEEE 37-bus feeder, such as the polynomial chaos expansion and the Monte Carlo approaches demonstrate that the proposed method can achieve accurate GSA outcomes while maintaining high computational efficiency. 
    more » « less