Abstract Recent work suggests that storm track diagnostics such as eddy heat fluxes and eddy kinetic energies have very small signatures in the first annular mode of zonal mean zonal wind, suggesting a lack of co‐variability between the locations of the extratropical jet and storm tracks. The frequency‐dependence of this apparent decoupling is explored in ERA‐Interim reanalysis data. The annular modes show similar spatial characteristics in the different frequency ranges considered. Cancellation between the signatures of storm track diagnostics in the leading low‐pass and high‐pass filtered annular modes is evident, partly explaining their small signature in the total. It is shown that at timescales greater than 30 days, the first zonal wind mode describes latitudinal shifts of both the midlatitude jet and its associated storm tracks, and it appears that the persistence of zonal wind anomalies is sustained primarily by a baroclinic feedback.
more »
« less
Impact of Atmospheric Cloud Radiative Effects on Annular Mode Persistence in Idealized Simulations
Abstract The mechanisms by which clouds impact the variability of the mid‐latitude atmosphere are poorly understood. We use an idealized, dry atmospheric model to investigate the relationship between Atmospheric Cloud Radiative Effects (ACRE) and annular mode persistence. We force the model with time‐varying diabatic heating that mimics the observed ACRE response to the Southern Annular Mode (SAM). Realistic ACRE forcing reduces annular mode persistence by 5 days (−16%), which we attribute to a weakening of low‐frequency eddy forcing via modified low‐level temperature gradients, though this effect is partly compensated by reduced frictional damping due to zonal wind anomalies becoming more top‐heavy. The persistence changes are nonlinear with respect to the amplitude of ACRE forcing, reflecting nonlinearities in the response of the eddy forcing. These results highlight the ACRE's impact on low‐frequency eddy forcing as the dominant cause of changes in annular mode persistence.
more »
« less
- Award ID(s):
- 2202991
- PAR ID:
- 10532267
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. Simulations of climate of the last millennium (LM) show that external forcing had a major contribution to the evolution of temperatures; warmer and colder periods like the Medieval Climate Anomaly (MCA; ca. 950–1250 CE) and the Little Ice Age (LIA; ca. 1450–1850 CE) were critically influenced by changes in solar and volcanic activity. Even if this influence is mainly observed in terms of temperatures, evidence from simulations and reconstructions shows that other variables related to atmospheric dynamics and hydroclimate were also influenced by external forcing over some regions. In this work, simulations from the Coupled Model Intercomparison Project Phase 5 and Paleoclimate Modelling Intercomparison Project Phase 3 (CMIP5/PMIP3) are analyzed to explore the influence of external forcings on the dynamical and hydrological changes during the LM at different spatial and temporal scales. Principal component (PC) analysis is used to obtain the modes of variability governing the global evolution of climate and to assess their correlation with the total external forcing at multidecadal to multicentennial timescales. For shorter timescales, a composite analysis is used to address the response to specific events of external forcing like volcanic eruptions. The results show coordinated long-term changes in global circulation patterns, which suggest expansions and contractions of the Hadley cells and latitudinal displacements of westerlies in response to external forcing. For hydroclimate, spatial patterns of drier and wetter conditions in areas influenced by the North Atlantic Oscillation (NAO), Northern Annular Mode (NAM), and Southern Annular Mode (SAM) and alterations in the intensity and distribution of monsoons and convergence zones are consistently found. Similarly, a clear short-term response is found in the years following volcanic eruptions. Although external forcing has a greater influence on temperatures, the results suggest that dynamical and hydrological variations over the LM exhibit a direct response to external forcing at both long and short timescales that is highly dependent on the particular simulation and model.more » « less
-
null (Ed.)Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes.more » « less
-
Abstract As a dominant mode of jet variability on subseasonal time scales, the Southern Annular Mode (SAM) provides a window into how the atmosphere can produce internal oscillations on longer-than-synoptic time scales. While SAM’s existence can be explained by dry, purely barotropic theories, the time scale for its persistence and propagation is set by a lagged interaction between barotropic and baroclinic mechanisms, making the exact physical mechanisms challenging to identify and to simulate, even in latest generation models. By partitioning the eddy momentum flux convergence in MERRA-2 using an eddy–mean flow interaction framework, we demonstrate that diabatic processes (condensation and radiative heating) are the main contributors to SAM’s persistence in its stationary regime, as well as the key for preventing propagation in this regime. In SAM’s propagating regime, baroclinic and diabatic feedbacks also dominate the eddy–jet feedback. However, propagation is initiated by barotropic shifts in upper-level wave breaking and then sustained by a baroclinic response, leading to a roughly 60-day oscillation period. This barotropic propagation mechanism has been identified in dry, idealized models, but here we show evidence of this mechanism for the first time in reanalysis. The diabatic feedbacks on SAM are consistent with modulation of the storm-track latitude by SAM, altering the emission temperature and cloud cover over individual waves. Therefore, future attempts to improve the SAM time scale in models should focus on the storm-track location, as well as the roles of the cloud and moisture parameterizations. Significance StatementAs they circumnavigate the planet, the tropospheric jet streams slowly drift north and south over about 30 days, longer than the normal limit of weather prediction. Understanding the source of this “memory” could improve our knowledge of how the atmosphere organizes itself and our ability to make long-term forecasts. Current theories have identified several possible internal atmospheric interactions responsible for this memory. Yet most of the theories for understanding the jets’ behavior assume that this behavior is only weakly influenced by atmospheric water vapor. We show that this assumption is not enough to understand jet persistence. Instead, clouds and precipitation are more important contributors in reanalysis data than internal “dry” mechanisms to this memory of the Southern Hemisphere jet.more » « less
-
Abstract This study investigates how clouds and their atmospheric radiative effects respond to meridional shifts in the Southern Hemisphere (SH) mid‐latitude jet, represented by the Southern Annular Mode (SAM), using reanalysis data, CloudSat/CALIPSO observations, and CMIP6 models. Consistent with previous studies, poleward jet shifts displace storm‐track clouds, creating lower tropospheric radiative heating anomalies poleward of the mean jet latitude and cooling anomalies on the equatorward side of the mean jet latitude where large‐scale subsidence increases low cloud fraction. Whether these radiative heating anomalies can affect SAM persistence is also investigated in CMIP6 models. If observed sea surface temperatures are prescribed, models that simulate low cloud responses more realistically show less SAM persistence, aligning more closely with observations. Our results based on CMIP6 models agree with a recent idealized modeling study and suggest that atmospheric cloud radiative heating anomalies, induced by the poleward jet shift, contribute to a reduction in SAM persistence.more » « less
An official website of the United States government
