skip to main content


This content will become publicly available on April 1, 2025

Title: Relative Contributions of Field‐Aligned Currents and Particle Precipitation to Inter‐Hemispheric Asymmetry at High Latitudes During the 2015 St. Patrick's Day Storm
Abstract

High latitude upper atmospheric inter‐hemispheric asymmetry (IHA) tends to be enhanced during geomagnetic storms, which may be due to the complex spatiotemporal changes and magnitude modifications in field aligned currents (FACs) and particle precipitation (PP). However, the relative contribution of FACs and PP to IHA in high‐latitude forcing and energy is not well understood. The IHA during the 2015 St. Patrick’s Day storm has been investigated using the global ionosphere thermosphere model (GITM), driven by FACs from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and PP from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). A comprehensive study of the (a) relative contributions of FACs and PP to electric potential and Joule heating and (b) sensitivity of electric potential and Joule heating to the changes in magnitude and distribution of FACs and PP is presented. The results indicate that FACs lead to larger potential and Joule heating changes compared with PP. The spatial variations of potential and Joule heating are also affected by variation in FACs. As for asymmetric magnitude and distribution, it is found that electric potential and Joule heating are more sensitive to changes in the distribution of FACs and PP than the magnitude of FACs and PP. A new spatial asymmetry index (SAI) is introduced, which reveals spatial asymmetric details that are often overlooked by previous studies. This sensitivity study reveals the relative contributions in high‐latitude forcing and emphasizes the importance of obtaining accurate FACs and PP in both hemispheres.

 
more » « less
Award ID(s):
2002574
PAR ID:
10532373
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
129
Issue:
4
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inter-hemispheric asymmetry (IHA) in Earth’s ionosphere–thermosphere (IT) system can be associated with high-latitude forcing that intensifies during storm time, e.g., ion convection, auroral electron precipitation, and energy deposition, but a comprehensive understanding of the pathways that generate IHA in the IT is lacking. Numerical simulations can help address this issue, but accurate specification of high-latitude forcing is needed. In this study, we utilize the Active Magnetosphere and Planetary Electrodynamics Response Experiment-revised fieldaligned currents (FACs) to specify the high-latitude electric potential in the Global Ionosphere and Thermosphere Model (GITM) during the October 8–9, 2012, storm. Our result illustrates the advantages of the FAC-driven technique in capturing high-latitude ion drift, ion convection equatorial boundary, and the storm-time neutral density response observed by satellite. First, it is found that the cross-polar-cap potential, hemispheric power, and ion convection distribution can be highly asymmetric between two hemispheres with a clear Bydependence in the convection equatorial boundary. Comparison with simulation based on mirror precipitation suggests that the convection distribution is more sensitive to FAC, while its intensity also depends on the ionospheric conductance-related precipitation. Second, the IHA in the neutral density response closely follows the IHA in the total Joule heating dissipation with a time delay. Stronger Joule heating deposited associated with greater high-latitude electric potential in the southern hemisphere during the focus period generates more neutral density as well, which provides some evidences that the high-latitude forcing could become the dominant factor to IHAs in the thermosphere when near the equinox. Our study improves the understanding of storm-time IHA in high-latitude forcing and the IT system.

     
    more » « less
  2. Abstract

    In this study, the Global Ionosphere Thermosphere Model is utilized to investigate the inter‐hemispheric asymmetry in the ionosphere‐thermosphere (I‐T) system at mid‐ and high‐latitudes (|geographic latitude| > 45°) associated with inter‐hemispheric differences in (a) the solar irradiance, (b) geomagnetic field, and (c) magnetospheric forcing under moderate geomagnetic conditions. Specifically, we have quantified the relative significance of the above three causes to the inter‐hemispheric asymmetries in the spatially weighted averaged E‐region electron density, F‐region neutral mass density, and horizontal neutral wind along with the hemispheric‐integrated Joule heating. Further, an asymmetry index defined as the percentage differences of these four quantities between the northern and southern hemispheres (|geographic latitude| > 45°) was calculated. It is found that: (a) The difference of the solar extreme ulutraviolet (EUV) irradiance plays a dominant role in causing inter‐hemispheric asymmetries in the four examined I‐T quantities. Typically, the asymmetry index for the E‐region electron density and integrated Joule heating at solstices with F10.7 = 150 sfu can reach 92.97% and 38.25%, respectively. (b) The asymmetric geomagnetic field can result in a strong daily variation of inter‐hemispheric asymmetries in the F‐region neutral wind and hemispheric‐integrated Joule heating over geographic coordinates. Their amplitude of asymmetry indices can be as large as 20.81% and 42.52%, which can be comparable to the solar EUV irradiance effect. (c) The contributions of the asymmetric magnetospheric forcing, including particle precipitation and ion convection pattern, can cause the asymmetry of integrated Joule heating as significant as 28.43% and 34.72%, respectively, which can be even stronger than other causes when the geomagnetic activity is intense.

     
    more » « less
  3. Abstract

    Mesoscale high‐latitude electric fields are known to deposit energy into the ionospheric and thermospheric system, yet the energy deposition process is not fully understood. We conduct a case study to quantify the energy deposition from mesoscale high‐latitude electric fields to the thermosphere. For the investigation, we obtain the high‐latitude electric field with mesoscale variabilities from Poker Flat Incoherent Scatter Radar measurements during a moderate geomagnetic storm, providing the driver for the Global Ionosphere and Thermosphere Model (GITM) via the High‐latitude Input for Mesoscale Electrodynamics framework. The HIME‐GITM simulation is compared with GITM simulations driven by the large‐scale electric field from the Weimer model. Our modeling results indicate that the mesoscale electric field modifies the thermospheric energy budget primarily through enhancing the Joule heating. Specifically, in the local high‐latitude region of interest, the mesoscale electric field enhances the Joule heating by up to five times. The resulting neutral temperature enhancement can reach up to 50 K above 200 km altitude. Significant increase in the neutral density above 250 km altitude and in the neutral wind speed are found in the local region as well, lagging a few minutes after the Joule heating enhancement. We demonstrate that the energy deposited by the mesoscale electric field transfers primarily to the gravitational potential energy in the thermosphere.

     
    more » « less
  4. Abstract

    Nitric oxide (NO) emission via 5.3 µm wavelength plays dominant role in regulating the thermospheric temperature due to thermostat nature. The response of NO 5.3 mm emission to the negative pressure impulse during November 06–09, 2010 is studied by using Sounding of Atmosphere by Broadband Emission Radiometry (SABER) observations onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and model simulations. The TIMED/SABER satellite observations demonstrate a significant enhancement in the high latitude region. The Open Geospace General Circulation Model (OpenGGCM), Weimer model simulations and Active Magnetosphere and Planetary Electrodynamics Response Experiment measurements exhibit intensification and equatorward expansion of the field-aligned-currents (FACs) post-negative pressure impulse period due to the expansion of the dayside magnetosphere. The enhanced FACs drive precipitation of low energy particle flux and Joule heating rate affecting whole magnetosphere–ionosphere–thermosphere system. Our study based on electric fields and conductivity derived from the EISCAT Troms$${\o }$$øradar and TIEGCM simulation suggests that the enhanced Joule heating rate and the particle precipitations prompt the increase in NO cooling emission.

     
    more » « less
  5. Abstract

    In this study, field‐aligned currents (FACs) and ionospheric electric fields on different spatial scales are investigated through the analysis of FAC data from the Swarm satellites and electric field data from the Dynamic Explorer 2, respectively, from all seasons and under all solar wind conditions and varying levels of solar activity. Distributions of the average and variable components of FAC and electric field are the main focuses of this study, where the FAC variability is represented by the standard deviation of FAC in each magnetic latitude/magnetic local time bin and electric field variability is represented by the square root of the sum of squares of standard deviations of magnetic eastward and equatorward components of the electric field. We found that the mean patterns of the FAC and electric field are mainly contributed by the large‐scale (wavelength: ⩾500 km) FAC and electric field. Unlike the average, in addition to the large scale, variabilities of FAC and electric field are not negligible on mesoscale (wavelength: 100–500 km) and small scale (wavelength: 8–100 km), while the FAC variability shows a different scale dependence from the electric field variability. Specifically, for decreasing scale sizes, the FAC variability increases while the electric field variability decreases, suggesting that the strong FACs on small scale and mesoscale do not necessarily correspond to strong ionospheric electric fields on those scales. Further, FAC variabilities on large scale and mesoscale are included into the Global Ionosphere Thermosphere Model (GITM) and the corresponding impacts on Joule heating have been assessed. It was found that, for the conditions studied here, the large‐scale FAC variability may significantly increase the Joule heating (~160% globally) and that the enhancement due to the mesoscale FAC variability is not negligible (~36% globally).

     
    more » « less