One of the organic components in the perovskite photo-absorber, the methylammonium cation, has been suggested to be a roadblock to the long-term operation of organic–inorganic hybrid perovskite-based solar cells. In this work we systematically explore the crystallographic and optical properties of the compositional space of mixed cation and mixed halide lead perovskites, where formamidinium (FA + ) is gradually replaced by cesium (Cs + ), and iodide (I − ) is substituted by bromide (Br − ), i.e. , Cs y FA 1− y Pb(Br x I 1− x ) 3 . Higher tolerance factors lead to more cubic structures, whereas lower tolerance factors lead to more orthorhombic structures. We find that while some correlation exists between the tolerance factor and structure, the tolerance factor does not provide a holistic understanding of whether or not a perovskite structure will fully form. By screening 26 solar cells with different compositions, our results show that Cs 1/6 FA 5/6 PbI 3 delivers the highest efficiency and long-term stability among the I-rich compositions. This work sheds light on the fundamental structure–property relationships in the Cs y FA 1− y Pb(Br x I 1− x ) 3 compositional space, providing vital insight to the design of durable perovskite materials. Our approach provides a library of structural and optoelectronic information for this compositional space.
more »
« less
Rethinking tolerance factor analysis for chalcogenide perovskites
Tolerance factor analysis has been widely used to predict suitable compositions for oxide and halide perovskites. However, in the case of the emerging chalcogenide perovskites, the predictions from the tolerance factor have failed to align with experimental observations. In this work, we reconsider how tolerance factor is being applied, specifically adjusting for the effect of increased covalency of bonding on the ionic radii. Further, we propose a series of screening steps based on the octahedral factor, tolerance factor, and electronegativity difference to better predict the formation of sulfide perovskites.
more »
« less
- Award ID(s):
- 1855882
- PAR ID:
- 10532409
- Publisher / Repository:
- PubMed
- Date Published:
- Journal Name:
- Materials Horizons
- ISSN:
- 2051-6347
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Processing–structure relationships are at the heart of materials science, and predictive tools are essential for modern technological industries insofar as structure dictates intrinsic properties; however, few theoretical models exist for cation‐ordered perovskites. In this work, a combination of data mining and solid‐state synthesis was employed to collect structural data of 1:2 ordered (triple) perovskites. Three compositions within the (Ba1 − xSrx)(Mg1/3Ta2/3)O3system were synthesized using a conventional solid‐state mixed‐oxide method. X‐ray diffraction data showed evidence of long‐range 1:2 B‐site cation ordering for all compositions. Additional data for another 24 1:2 ordered compositions were mined from literature. Correlative models for the deviation in modified tolerance factor (Δt′) were derived for each system, and a general model which is capable of predicting the pseudocubic lattice constants of such perovskites based solely on published ionic‐radii data developed.more » « less
-
Triple cation Cs/methylammonium (MA)/formamidinium (FA) and double halide Br/I lead perovskites improved the stability and efficiency of perovskite solar cells (PVSCs). However, their effects on alloyed Pb–Sn perovskites are unexplored. In this work, perovskite thin films with the composition Cs x (MA 0.17 FA 0.83 ) 1−x Pb 1−y Sn y (I 0.83 Br 0.17 ) 3 are synthesized utilizing a one-step solution process plus an anti-solvent wash technique and deployed in PVSCs with an inverted architecture. All films show a cubic crystal structure, demonstrating that compositional tuning of both the tolerance factor and crystallization rate allows for dense, single phase formation. The band gaps, affected by both lattice constriction and octahedral tilting, show opposite trends in Pb-rich or Sn-rich perovskites with the increase of Cs for fixed Sn compositions. The Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb 0.25 Sn 0.75 (I 0.83 Br 0.17 ) 3 PVSCs achieve a power conversion efficiency (PCE) of 11.05%, a record for any PVSC containing 75% Sn perovskites, and the Cs 0.10 (MA 0.17 FA 0.83 ) 0.90 Pb 0.75 Sn 0.25 (I 0.83 Br 0.17 ) 3 PVSCs reach a record PCE of 15.78%. Moreover, the triple cation and double halide alloyed Pb–Sn perovskites exhibit improved device stability under inert and ambient conditions. This study, which illustrates the impact of cation and halide tuning on alloyed Pb–Sn perovskites, can be used to further eliminate Pb and improve device performance of high Sn PVSCs and other optoelectronic devices.more » « less
-
This paper discusses the in-situ characterization tools designed to assess radiation tolerance and elemental migration in perovskite materials. With the increasing use of perovskites in various technological applications, understanding their response to radiation exposure is paramount. Ion Beam Induced Charge (IBIC) emerges as a powerful tool for investigating the radiation tolerance of perovskites at the microscale. By employing focused ion beams, IBIC allows for the spatial mapping of charge carriers, offering insights into the material's electronic response to radiation-induced defects. This technique enables researchers to pinpoint areas of enhanced or suppressed charge collection, providing valuable information on the perovskite's intrinsic properties under irradiation. Rutherford Backscattering Spectrometry (RBS) complements the study by offering a quantitative analysis of elemental migration in perovskite materials. Through the precise measurement of backscattered ions, RBS provides a detailed understanding of the elemental composition and distribution within the perovskite lattice after radiation exposure. The integration of IBIC and RBS techniques in in-situ experiments enhances the comprehensive characterization of radiation effects on perovskites.more » « less
-
Earis, Philip (Ed.)Perovskite photovoltaics (PVs) are under intensive development for promise in terrestrial energy production. Soon, the community will find out how much of that promise may become reality. Perovskites also open new opportunities for lower cost space power. However, radiation tolerance of space environments requires appropriate analysis of relevant devices irradiated under representative radiation conditions. We present guidelines designed to rigorously test the radiation tolerance of perovskite PVs. We review radiation conditions in common orbits, calculate nonionizing and ionizing energy losses (NIEL and IEL) for perovskites, and prioritize proton radiation for effective nuclear interactions. Low-energy protons (0.05–0.15 MeV) create a representative uniform damage profile, whereas higher energy protons (commonly used in ground-based evaluation) require significantly higher fluence to accumulate the equivalent displacement damage dose due to lower scattering probability. Furthermore, high-energy protons may ‘‘heal’’ devices through increased electronic ionization. These procedural guidelines differ from those used to test conventional semiconductors.more » « less
An official website of the United States government

