Abstract More than 30% of human food crop yield requires animal pollination. In addition, successful crop production depends on agrochemicals to control pests. However, agrochemicals can have negative consequences on beneficial insect pollinators, such as bees. We investigated the effects of an emerging class of pesticides, sulfoximines, on the common eastern bumblebee, Bombus impatiens. We performed a series of 96-hour toxicity tests on microcolonies of laboratory-reared B. impatiens. Our data showed that sulfoxaflor (SFX) is significantly less toxic to B. impatiens than historically used neonicotinoid pesticides, such as thiamethoxam. Further, for the first time, we found significant differences among castes in sensitivity to SFX; workers and drones were more sensitive than queens. These findings are notable because they reveal both caste and sex-specific differences in bumblebee sensitivity to pesticides. Interestingly, we found no evidence that bumblebees avoid SFX-contaminated sugar syrup. To the contrary, B. impatiens workers had an apparent preference for SFX-contaminated sugar syrup over sugar syrup alone. Overall, our investigation provides novel information on an important pesticide and may help inform regulatory decisions regarding pesticide use.
more »
« less
Pesticide risk during commercial apple pollination is greater for honeybees than other managed and wild bees
Abstract Most pesticide research has focussed on risk to managed honeybees, but other managed and wild bees are also exposed to pesticides. Critically, we know little about the magnitude and sources of risk to honeybees compared with other bees during crop pollination.To compare pesticide exposure and risk across wild and managed bees, we sampled the main bee groups present during bloom in 20 apple orchards, including managed honeybees (Apis mellifera), managed bumblebee workers (Bombus impatiens), wild mining bees (Andrenaspp. andAndrena [Melandrena]spp.), bumblebee foundress queens (Bombus impatiens) and eastern carpenter bees (Xylocopa virginica). We screened all bees for 92 pesticides and computed a Risk Quotient using available toxicity data (honeybee LD50s), adjusting for differences in toxicity known to scale with body mass. To gain insight into exposure origin, we compared residues in bees to those in focal orchard apple and dandelion flowers.Nearly all bee samples contained pesticides (95%), with the average contamination level ranging from 7.1 ± 2.8 parts per billion (ppb) inB. impatiensworkers to 388.4 ± 146.2 ppb inAndrena. Exposure profiles were similar for all bees exceptA. mellifera, whose unique exposure profile included high levels of the neonicotinoid insecticide thiamethoxam.All bee groups except wildB. impatiensqueens had at least one sample exceeding a US Environmental Protection Agency or European Food Safety Authority exposure level of concern.Apis melliferaexperienced significantly greater risk than other bee groups, with 63% and 81% of samples exceeding an acute or chronic exposure level of concern, respectively. Risk to honeybees was driven primarily by high thiamethoxam levels not found in focal orchard flowers and likely originating outside the orchard.Synthesis and applications: We find that pesticide exposure and risk differ between honeybees and other managed and wild bees during apple pollination. Furthermore, pesticide exposure is a landscape‐scale phenomenon and therefore measures to reduce exposure must consider the surroundings beyond focal farms. Limiting orchard sprays, while reducing on‐farm exposures, will not protect far‐foraging bees from off‐farm exposures such as thiamethoxam, which we hypothesize is coming from nearby seed‐treated corn fields planted during apple bloom.
more »
« less
- Award ID(s):
- 1929499
- PAR ID:
- 10532417
- Publisher / Repository:
- Journal of Applied Ecology
- Date Published:
- Journal Name:
- Journal of Applied Ecology
- Volume:
- 61
- Issue:
- 6
- ISSN:
- 0021-8901
- Page Range / eLocation ID:
- 1289 to 1300
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wild pollinator declines are increasingly linked to pesticide exposure, yet it is unclear how intraspecific differences contribute to observed variation in sensitivity, and the role gut microbes play in the sensitivity of wild bees is largely unexplored. Here, we investigate site-level differences in survival and microbiome structure of a wild bumble bee exposed to multiple pesticides, both individually and in combination. We collected wildBombus vosnesenskiiforagers (N= 175) from an alpine meadow, a valley lake shoreline and a suburban park and maintained them on a diet containing a herbicide (glyphosate), a fungicide (tebuconazole), an insecticide (imidacloprid) or a combination of these chemicals. Alpine bees had the highest overall survival, followed by shoreline bees then suburban bees. This was in part explained by body size differences across sites and the presence of conopid parasitoids at two of the sites. Notably, site of origin impacted bee survival on the herbicide, fungicide and combination treatment. We did not find evidence of gut microbiome differences across pesticide treatment, nor a site-by-treatment interaction. Regardless, the survival differences we observed emphasize the importance of considering population of origin when studying pesticide toxicity of wild bees.more » « less
-
null (Ed.)Numerous threats are putting pollinator health and essential ecosystem pollination services in jeopardy. Although individual threats are widely studied, their co-occurrence may exacerbate negative effects, as posited by the multiple stressor hypothesis. A prominent branch of this hypothesis concerns pesticide–pathogen co-exposure. A landscape analysis demonstrated a positive association between local chlorothalonil fungicide use and microsporidian pathogen ( Nosema bombi ) prevalence in declining bumblebee species ( Bombus spp.), suggesting an interaction deserving further investigation. We tested the multiple stressor hypothesis with field-realistic chlorothalonil and N. bombi exposures in worker-produced B. impatiens microcolonies. Chlorothalonil was not avoided in preference assays, setting the stage for pesticide–pathogen co-exposure. However, contrary to the multiple stressor hypothesis, co-exposure did not affect survival. Bees showed surprising tolerance to Nosema infection, which was also unaffected by chlorothalonil exposure. However, previously fungicide-exposed infected bees carried more transmission-ready spores. Our use of a non-declining bumblebee and potential higher chlorothalonil exposures under some scenarios could mean stronger individual or interactive effects in certain field settings. Yet, our results alone suggest consequences of pesticide co-exposure for pathogen dynamics in host communities. This underlies the importance of considering both within- and between-host processes when addressing the multiple stressor hypothesis in relation to pathogens.more » « less
-
In northern India and surrounding countries of the Lower Himalaya, apple is an important cash crop that contributes significantly to state economies and farmer livelihoods. Apple cultivation is shifting to higher elevations to counter declining fruit yields associated with climate change. Pollinator scarcity is another factor linked to declines in fruit yield and quality. To advance understanding of bee diversity and pollination ecology in apples for this region, we compiled a taxonomically updated list of bee taxa associated with apple orchards using records from existing literature and a new field study. Our list includes 25 bee genera, 75 named species, and numerous morphospecies. Common genera also feature prominently in apple studies elsewhere in the world. Apis cerana and A. mellifera were the most frequently reported visitors to apple flowers; Bombus, Ceratina, Lasioglossum, and Syrphidae flies were the most common non-Apis floral visitors. Bee species richness was inversely correlated with elevation and pollination deficit whereas bee abundance was not. Therefore, apples grown at higher elevations may experience more favourable growing conditions but also incur greater pollination deficits that are linked to reduced bee richness. This underscores the importance of conserving bee diversity to safeguard pollination services and farmer livelihoods in the region. Our literature review further highlights the need for more tools to identify the regional bee fauna, more thoroughly documented and standardised study methods to build capacity within the research community and aid comparative studies, and more expansive cataloguing and monitoring of pollinator communities to better understand the diversity, roles, and status of bees throughout this under-studied region.more » « less
-
Bumble bees (Bombus spp.) are important pollinators for both wild and agriculturally managed plants. We give an overview of what is known about the diverse community of internal potentially deleterious bumble bee symbionts, including viruses, bacteria, protozoans, fungi, and nematodes, as well as methods for their detection, quantification, and control. We also provide information on assessment of risk for select bumble bee symbionts and highlight key knowledge gaps. This information is crucial for ongoing efforts to establish parasite-free programs for future commerce in bumble bees for crop pollination, and to mitigate the problems with pathogen spillover to wild populations.more » « less
An official website of the United States government

