Aerosol jet printing is a compelling technology for hybrid electronics, combining digital and noncontact patterning with broad materials compatibility, resolution as fine as ≈10 microns, and a high standoff distance of 1–5 mm. Despite its growing popularity in research environments, a robust process understanding and improved manufacturing control are essential for achieving the reliability and predictability required for broader adoption in advanced applications. Herein, recent developments in process monitoring using in‐line light scattering measurements are discussed, including their mechanistic foundations, experimental validation, relevance for process control and reliability, and value as a diagnostic tool for fundamental studies. Experimental measurements confirm the correlation between measured light scattering and deposition rate. Building on this platform, feedback from the real‐time measurement is coupled with printer software to support automated closed‐loop control via a simple proportional‐integral‐derivative software control loop. Combined with the utility of these measurements as a diagnostic to accelerate ink formulation and support fundamental process science experiments, this in‐line measurement provides a useful tool to improve print reliability with the potential to advance the adoption and capabilities of this method in conformal, flexible, and hybrid electronics applications.
more »
« less
Enhanced Resolution, Throughput, and Stability of Aerosol Jet Printing via In Line Heating
Abstract Aerosol jet printing offers high resolution, broad materials compatibility, and digital patterning for flexible, conformal, and hybrid electronics. However, limited throughput, instability, and complex optimization requirements inhibit translation to industrial applications. An in‐line heater integrated on a custom printer is demonstrated to modulate droplet evaporation in the aerosol phase, thereby decoupling the deposition rate of functional solids and liquid ink to enable taller, narrower features with aspect ratios reaching 0.29 for a single line. Heating the printhead from room temperature to 80 °C reduced the sensitivity of resolution to deposition rate by ≈90%, improving reliability. With this strategy, increasing the linear deposition rate by 10x results in a modest increase of 27% in line width, compared to a four‐fold increase without heating, permitting higher throughput without sacrificing print quality. Providing a control for in‐line drying independent of ink formulation enables rapid, straightforward design of new materials and processes. This ability to engineer drying of droplets prior to impingement provides a versatile tool to meet complex fabrication challenges, as demonstrated here for both high aspect ratio printing and conformal patterning on rough and three‐dimensional surfaces.
more »
« less
- Award ID(s):
- 2224303
- PAR ID:
- 10532518
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 34
- Issue:
- 28
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract As an alternative to traditional photolithography, printing processes are widely explored for the patterning of customizable devices. However, to date, the majority of high‐resolution printing processes for functional nanomaterials are additive in nature. To complement additive printing, there is a need for subtractive processes, where the printed ink results in material removal, rather than addition. In this study, a new subtractive patterning approach that uses electrohydrodynamic‐jet (e‐jet) printing of acid‐based inks to etch nanoscale zinc oxide (ZnO) thin films deposited using atomic layer deposition (ALD) is introduced. By tuning the printing parameters, the depth and linewidth of the subtracted features can be tuned, with a minimum linewidth of 11 µm and a tunable channel depth with ≈5 nm resolution. Furthermore, by tuning the ink composition, the volatility and viscosity of the ink can be adjusted, resulting in variable spreading and dissolution dynamics at the solution/film interface. In the future, acid‐based subtractive patterning using e‐jet printing can be used for rapid prototyping or customizable manufacturing of functional devices on a range of substrates with nanoscale precision.more » « less
-
Abstract The electronics industry is rapidly advancing toward the development of highly miniaturized sensors and circuits, driving an increasing demand for precise, localized manufacturing techniques. Extrusion-based additive manufacturing—particularly direct ink writing—has emerged as a promising method for fabricating microscale electronic components. Recent efforts have focused on producing fine-resolution structures capable of conformal deposition on complex or uneven surfaces. While prior studies have established theoretical models for the trajectory of non-conductive material jets under electric fields—demonstrating feasibility in printing high-resolution features—a theoretical framework for conductive ink behavior under similar conditions remains lacking. This study introduces a theoretical model to describe the behavior of conductive jet extrusion under varying electrostatic forces. The model is validated through high-speed physical and manufacturing experiments using poly(3,4-ethylene-dioxythiophene)-based ink. The results demonstrate that the application of an external electric field significantly broadens the printable window, enabling: (i) high-speed printing up to 1.7 m/s with successful deposition on rough textile substrates (average surface roughness Ra = 8 µm), and (ii) the formation of micro-sized lines with widths as small as ∼60% of the nozzle's inner diameter (e.g., 300 µm-wide lines printed using a 500 µm diameter nozzle).more » « less
-
Abstract Lightweight energy storage devices are essential for developing compact wearable and distributed electronics, and additive manufacturing offers a scalable, low‐cost approach to fabricating such devices with complex geometries. However, additive manufacturing of high‐performance, on‐demand energy storage devices remains challenging due to the need for stable, multifunctional nanomaterial inks. Herein, the development of 2‐dimensional (2D) titanium carbide (Ti3C2TxMXene) ink that is compatible with aerosol jet printing for energy storage applications is demonstrated. The developed MXene ink demonstrates long‐term chemical and physical stability, ensuring consistent printability and achieving high‐resolution prints (≈45 µm width lines) with minimal overspray. The high‐resolution aerosol‐jet printed MXene supercapacitor achieves an areal capacitance of 122 mF cm−2and a volumetric capacitance of 611 F cm−3, placing them among the highest‐performing printed supercapacitors reported to date. These findings highlight the potential of aerosol jet printing with MXene inks for on‐demand, scalable, and cost‐effective fabrication of printed electronic and electrochemical devices.more » « less
-
Abstract The development of new materials and their compositional and microstructural optimization are essential in regard to next-generation technologies such as clean energy and environmental sustainability. However, materials discovery and optimization have been a frustratingly slow process. The Edisonian trial-and-error process is time consuming and resource inefficient, particularly when contrasted with vast materials design spaces1. Whereas traditional combinatorial deposition methods can generate material libraries2,3, these suffer from limited material options and inability to leverage major breakthroughs in nanomaterial synthesis. Here we report a high-throughput combinatorial printing method capable of fabricating materials with compositional gradients at microscale spatial resolution. In situ mixing and printing in the aerosol phase allows instantaneous tuning of the mixing ratio of a broad range of materials on the fly, which is an important feature unobtainable in conventional multimaterials printing using feedstocks in liquid–liquid or solid–solid phases4–6. We demonstrate a variety of high-throughput printing strategies and applications in combinatorial doping, functional grading and chemical reaction, enabling materials exploration of doped chalcogenides and compositionally graded materials with gradient properties. The ability to combine the top-down design freedom of additive manufacturing with bottom-up control over local material compositions promises the development of compositionally complex materials inaccessible via conventional manufacturing approaches.more » « less
An official website of the United States government

