The Federal Highway Administration (FHWA) mandates biannual bridge inspections to assess the condition of all bridges in the United States. These inspections are recorded in the National Bridge Inventory (NBI) and the respective state’s databases to manage, study, and analyze the data. As FHWA specifications become more complex, inspections require more training and field time. Recently, element-level inspections were added, assigning a condition state to each minor element in the bridge. To address this new requirement, a machine-aided bridge inspection method was developed using artificial intelligence (AI) to assist inspectors. The proposed method focuses on the condition state assessment of cracking in reinforced concrete bridge deck elements. The deep learning-based workflow integrated with image classification and semantic segmentation methods is utilized to extract information from images and evaluate the condition state of cracks according to FHWA specifications. The new workflow uses a deep neural network to extract information required by the bridge inspection manual, enabling the determination of the condition state of cracks in the deck. The results of experimentation demonstrate the effectiveness of this workflow for this application. The method also balances the costs and risks associated with increasing levels of AI involvement, enabling inspectors to better manage their resources. This AI-based method can be implemented by asset owners, such as Departments of Transportation, to better serve communities.
more »
« less
Evaluating Human Expert Knowledge in Damage Assessment Using Eye Tracking: A Disaster Case Study
The rising frequency of natural disasters demands efficient and accurate structural damage assessments to ensure public safety and expedite recovery. Human error, inconsistent standards, and safety risks limit traditional visual inspections by engineers. Although UAVs and AI have advanced post-disaster assessments, they still lack the expert knowledge and decision-making judgment of human inspectors. This study explores how expertise shapes human–building interaction during disaster inspections by using eye tracking technology to capture the gaze patterns of expert and novice inspectors. A controlled, screen-based inspection method was employed to safely gather data, which was then used to train a machine learning model for saliency map prediction. The results highlight significant differences in visual attention between experts and novices, providing valuable insights for future inspection strategies and training novice inspectors. By integrating human expertise with automated systems, this research aims to improve the accuracy and reliability of post-disaster structural assessments, fostering more effective human–machine collaboration in disaster response efforts.
more »
« less
- Award ID(s):
- 2123343
- PAR ID:
- 10532632
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Buildings
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 2075-5309
- Page Range / eLocation ID:
- 2114
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Decaying infrastructure maintenance cost allocation depends heavily on accurate and safe inspection in the field. New tools to conduct inspections can assist in prioritizing investments in maintenance and repairs. The industrial revolution termed as “Industry 4.0” is based on the intelligence of machines working with humans in a collaborative workspace. Contrarily, infrastructure management has relied on the human for making day-to-day decisions. New emerging technologies can assist during infrastructure inspections, to quantify structural condition with more objective data. However, today’s owners agree in trusting the inspector’s decision in the field over data collected with sensors. If data collected in the field is accessible during the inspections, the inspector decisions can be improved with sensors. New research opportunities in the human–infrastructure interface would allow researchers to improve the human awareness of their surrounding environment during inspections. This article studies the role of Augmented Reality (AR) technology as a tool to increase human awareness of infrastructure in their inspection work. The domains of interest of this research include both infrastructure inspections (emphasis on the collection of data of structures to inform management decisions) and emergency management (focus on the data collection of the environment to inform human actions). This article describes the use of a head-mounted device to access real-time data and information during their field inspection. The authors leverage the use of low-cost smart sensors and QR code scanners integrated with Augmented Reality applications for augmented human interface with the physical environment. This article presents a novel interface architecture for developing Augmented Reality–enabled inspection to assist the inspector’s workflow in conducting infrastructure inspection works with two new applications and summarizes the results from various experiments. The main contributions of this work to computer-aided community are enabling inspectors to visualize data files from database and real-time data access using an Augmented Reality environment.more » « less
-
Drones are increasingly used during routine inspections of bridges to improve data consistency, work efficiency, inspector safety, and cost effectiveness. Most drones, however, are operated manually within a visual line of sight and thus unable to inspect long-span bridges that are not completely visible to operators. In this paper, aerial nondestructive evaluation (aNDE) will be envisioned for elevated structures such as bridges, buildings, dams, nuclear power plants, and tunnels. To enable aerial nondestructive testing (aNDT), a human-robot system will be created to integrate haptic sensing and dexterous manipulation into a drone or a structural crawler in augmented/virtual reality (AR/VR) for beyond-visual-line-of-sight (BVLOS) inspection of bridges. Some of the technical challenges and potential solutions associated with aNDT&E will be presented. Example applications of the advanced technologies will be demonstrated in simulated bridge decks with stipulated conditions. The developed human-robot system can transform current on-site inspection to future tele-inspection, minimizing impact to traffic passing over the bridges. The automated tele-inspection can save as much as 75% in time and 95% in cost.more » « less
-
The purpose of a routine bridge inspection is to assess the physical and functional condition of a bridge according to a regularly scheduled interval. The Federal Highway Administration (FHWA) requires these inspections to be conducted at least every 2 years. Inspectors use simple tools and visual inspection techniques to determine the conditions of both the elements of the bridge structure and the bridge overall. While in the field, the data is collected in the form of images and notes; after the field work is complete, inspectors need to generate a report based on these data to document their findings. The report generation process includes several tasks: (1) evaluating the condition rating of each bridge element according to FHWA Recording and Coding Guide for Structure Inventory and Appraisal of the Nation’s Bridges; and (2) updating and organizing the bridge inspection images for the report. Both of tasks are time-consuming. This study focuses on assisting with the latter task by developing an artificial intelligence (AI)-based method to rapidly organize bridge inspection images and generate a report. In this paper, an image organization schema based on the FHWA Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation’s Bridges and the Manual for Bridge Element Inspection is described, and several convolutional neural network-based classifiers are trained with real inspection images collected in the field. Additionally, exchangeable image file (EXIF) information is automatically extracted to organize inspection images according to their time stamp. Finally, the Automated Bridge Image Reporting Tool (ABIRT) is described as a browser-based system built on the trained classifiers. Inspectors can directly upload images to this tool and rapidly obtain organized images and associated inspection report with the support of a computer which has an internet connection. The authors provide recommendations to inspectors for gathering future images to make the best use of this tool.more » « less
-
null (Ed.)Corrosion on steel bridge members is one of the most important bridge deficiencies that must be carefully monitored by inspectors. Human visual inspection is typically conducted first, and additional measures such as tapping bolts and measuring section losses can be used to assess the level of corrosion. This process becomes a challenge when some of the connections are placed in a location where inspectors have to climb up or down the steel members. To assist this inspection process, we developed a computervision based Unmanned Aerial Vehicle (UAV) system for monitoring the health of critical steel bridge connections (bolts, rivets, and pins). We used a UAV to collect images from a steel truss bridge. Then we fed the collected datasets into an instance level segmentation model using a region-based convolutional neural network to train characteristics of corrosion shown at steel connections with sets of labeled image data. The segmentation model identified locations of the connections in images and efficiently detected the members with corrosion on them. We evaluated the model based on how precisely it can detect rivets, bolts, pins, and corrosion damage on these members. The results showed robustness and practicality of our system which can also provide useful health information to bridge owners for future maintenance. These collected image data can be used to quantitatively track temporal changes and to monitor progression of damage in aging steel structures. Furthermore, the system can also assist inspectors in making decisions for further detailed inspections.more » « less
An official website of the United States government

