skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Unified Picture of Short and Long Gamma-Ray Bursts from Compact Binary Mergers
Abstract The recent detections of the ∼10 s longγ-ray bursts (GRBs) 211211A and 230307A followed by softer temporally extended emission (EE) and kilonovae point to a new GRB class. Using state-of-the-art first-principles simulations, we introduce a unifying theoretical framework that connects binary neutron star (BNS) and black hole–NS (BH–NS) merger populations with the fundamental physics governing compact binary GRBs (cbGRBs). For binaries with large total masses,Mtot≳ 2.8M, the compact remnant created by the merger promptly collapses into a BH surrounded by an accretion disk. The duration of the pre-magnetically arrested disk (MAD) phase sets the duration of the roughly constant power cbGRB and could be influenced by the disk mass,Md. We show that massive disks (Md≳ 0.1M), which form for large binary mass ratiosq≳ 1.2 in BNS orq≲ 3 in BH–NS mergers, inevitably produce 211211A-like long cbGRBs. Once the disk becomes MAD, the jet power drops with the mass accretion rate as M ̇ t 2 , establishing the EE decay. Two scenarios are plausible for short cbGRBs. They can be powered by BHs with less massive disks, which form for otherqvalues. Alternatively, for binaries withMtot≲ 2.8M, mergers should go through a hypermassive NS (HMNS) phase, as inferred for GW170817. Magnetized outflows from such HMNSs, which typically live for ≲1 s, offer an alternative progenitor for short cbGRBs. The first scenario is challenged by the bimodal GRB duration distribution and the fact that the Galactic BNS population peaks at sufficiently low masses that most mergers should go through an HMNS phase.  more » « less
Award ID(s):
2209655 2308615 1919310 2107839
PAR ID:
10532654
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Institute of Physics
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
958
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spinning supermassive black holes (BHs) in active galactic nuclei magnetically launch relativistic collimated outflows, or jets. Without angular momentum supply, such jets are thought to perish within 3 orders of magnitude in distance from the BH, well before reaching kiloparsec scales. We study the survival of such jets at the largest scale separation to date, via 3D general relativistic magnetohydrodynamic simulations of rapidly spinning BHs immersed into uniform zero-angular-momentum gas threaded by a weak vertical magnetic field. We place the gas outside the BH sphere of influence, or the Bondi radius, chosen to be much larger than the BH gravitational radius,RB= 103Rg. The BH develops dynamically important large-scale magnetic fields, forms a magnetically arrested disk (MAD), and launches relativistic jets that propagate well outsideRBand suppress BH accretion to 1.5% of the Bondi rate, M ̇ B . Thus, low-angular-momentum accretion in the MAD state can form large-scale jets in Fanaroff–Riley (FR) type I and II galaxies. Subsequently, the disk shrinks and exits the MAD state: barely a disk (BAD), it rapidly precesses, whips the jets around, globally destroys them, and lets 5%–10% of M ̇ B reach the BH. Thereafter, the disk starts rocking back and forth by angles 90°–180°: the rocking accretion disk (RAD) launches weak intermittent jets that spread their energy over a large area and suppress BH accretion to ≲2% M ̇ B . Because the BAD and RAD states tangle up the jets and destroy them well insideRB, they are promising candidates for the more abundant, but less luminous, class of FR0 galaxies. 
    more » « less
  2. Abstract Gamma-ray bursts (GRBs) are among the most energetic events in the Universe, driven by relativistic jets launched from black holes (BHs) formed during the collapse of massive stars or after the merger of two neutron stars. The jet power depends on the BH spin and the magnetic flux accreted onto it. In the standard thin disk model, jet power is limited by insufficient magnetic flux, even when the spin approaches maximum possible value. In contrast, the magnetically arrested disk (MAD) state limits jet energy by extracting significant angular momentum, braking BH rotation. We propose a unified model incorporating both standard thin disk and MAD states, identifying a universal curve for jet power per accretion rate as a function of the magnetic flux ratio, Δ eq = ( Φ BH / Φ MAD ) eq , at spin equilibrium. For long GRBs (lGRBs), the model predicts a maximum jet energy of ∼1.5% of the accretion energy, occurring at Δeq ∼ 0.4, where the BH equilibrium spin isa ∼ 0.5. Both long and short GRBs are unlikely to be produced by a MAD: for short GRBs, this requires an accreted mass orders of magnitude smaller than that available, while for lGRBs, the narrow progenitor mass distribution challenges the ability to produce the observed broad distribution of jet energies. This framework provides a consistent explanation for both standard and luminous GRBs, emphasizing the critical role of magnetic flux. Both long and short GRBs require magnetic flux distributions that peak around 1027G cm2
    more » « less
  3. Abstract Recent work by Moroianu et al. has suggested that the binary neutron star (BNS) merger GW190425 might have a potential fast radio burst (FRB) counterpart association, FRB20190425A, at the 2.8σlevel of confidence with a likely host galaxy association, namely UGC10667. The authors argue that the observations are consistent with a long-lived hypermassive neutron star (HMNS) that formed promptly after the BNS merger and was stable for approximately 2.5 hr before promptly collapsing into a black hole. Recently, Bhardwaj et al. conclusively associated FRB20190425A with UGC10667, potentially providing a direct host galaxy candidate for GW190425. In this work, we examine the multimessenger association based on the spacetime localization overlaps between GW190425 and the FRB host galaxy UGC10667 and find that the odds for a coincident association are O ( 5 ) . We validate this estimate by using a Gaussian process density estimator. Assuming that the association is indeed real, we then perform Bayesian parameter estimation on GW190425 assuming that the BNS event took place in UGC10667. We find that the viewing angle of GW190425 excludes an on-axis system atp(θv> 30°) ≈ 99.99%, highly favoring an off-axis system similar to GRB 170817A. We also find a slightly higher source frame total mass for the binary, namely, m total = 3.42 0.11 + 0.34 M , leading to an increase in the probability of prompt collapse into a black hole and therefore disfavors the long-lived HMNS formation scenario. Given our findings, we conclude that the association between GW190425 and FRB20190425A is disfavoured by current state-of-the-art gravitational-wave analyses. 
    more » « less
  4. Abstract We present a population of 11 of the faintest (>25.5 AB mag) short gamma-ray burst (GRB) host galaxies. We model their sparse available observations using the stellar population inference codeProspector-βand develop a novel implementation to incorporate the galaxy mass–radius relation. Assuming these hosts are randomly drawn from the galaxy population and conditioning this draw on their observed flux and size in a few photometric bands, we determine that these hosts have dwarf galaxy stellar masses of 7.0 log ( M * / M ) 9.1 . This is striking as only 14% of short GRB hosts with previous inferred stellar masses hadM*≲ 109M. We further show these short GRBs have smaller physical and host-normalized offsets than the rest of the population, suggesting that the majority of their neutron star (NS) merger progenitors were retained within their hosts. The presumably shallow potentials of these hosts translate to small escape velocities of ∼5.5–80 km s−1, indicative of either low postsupernova systemic velocities or short inspiral times. While short GRBs with identified dwarf host galaxies now comprise ≈14% of the total Swift-detected population, a number are likely missing in the current population, as larger systemic velocities (observed from the Galactic NS population) would result in highly offset short GRBs and less secure host associations. However, the revelation of a population of short GRBs retained in low-mass host galaxies offers a natural explanation for the observedr-process enrichment via NS mergers in Local Group dwarf galaxies, and has implications for gravitational-wave follow-up strategies. 
    more » « less
  5. Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. 
    more » « less