skip to main content


This content will become publicly available on July 5, 2025

Title: The role of the plasmon in interfacial charge transfer

The lack of a detailed mechanistic understanding for plasmon-mediated charge transfer at metal-semiconductor interfaces severely limits the design of efficient photovoltaic and photocatalytic devices. A major remaining question is the relative contribution from indirect transfer of hot electrons generated by plasmon decay in the metal to the semiconductor compared to direct metal-to-semiconductor interfacial charge transfer. Here, we demonstrate an overall electron transfer efficiency of 44 ± 3% from gold nanorods to titanium oxide shells when excited on resonance. We prove that half of it originates from direct interfacial charge transfer mediated specifically by exciting the plasmon. We are able to distinguish between direct and indirect pathways through multimodal frequency-resolved approach measuring the homogeneous plasmon linewidth by single-particle scattering spectroscopy and time-resolved transient absorption spectroscopy with variable pump wavelengths. Our results signify that the direct plasmon-induced charge transfer pathway is a promising way to improve hot carrier extraction efficiency by circumventing metal intrinsic decay that results mainly in nonspecific heating.

 
more » « less
Award ID(s):
2413590 2436147
PAR ID:
10532683
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
AAAS
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
27
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasmonic nanostructures have been demonstrated as emergent photocatalysts because of their efficient photon absorption and their ability to produce hot carriers. However, the plasmon-generated hot carriers decay through ultrafast relaxation pathways, resulting in a short lifetime that impedes the exploitation of hot carriers for chemical reactions. Charge separation at the heterojunction of the hybrid nanostructures can counteract the ultrafast decay to extend the carrier lifetime. Here, we fabricate hybrid nanostructures composed of gold nanorods and a carbon thin film and demonstrate efficient charge transfer between these two materials. Using single-particle dark-field scattering spectroscopy, we observe a broadening of the longitudinal plasmon for gold nanorods on a carbon film compared to those on a glass substrate. We attribute this plasmon damping to the electron transfer from gold nanorods to the carbon film and exclude the contribution from plasmon-induced resonance energy transfer. The electron transfer efficiencies are calculated as 52.8 ± 4.8 and 57.4 ± 4.0% for carbon films with thicknesses of 10 and 25 nm, respectively. This work demonstrates efficient charge separation at the gold–carbon film interface, which can extend the lifetime of hot carriers to promote plasmonic photocatalysts. 
    more » « less
  2. Abstract

    Plasmon decay is believed to play an essential role in inducing hot carrier transfer at the interfaces between plasmonic nanoparticles and semiconductor surfaces. In this work, we employ real-time time-dependent density functional theory (RT-TDDFT) simulation in the Wannier gauge to gain quantum-mechanical insights into the nonlinear dynamics of the plasmon decay in the Ag20nanoparticle at a semiconductor surface. The first-principles simulations show that the plasmon decay is more than two times faster when the Ag20nanoparticle is adsorbed on a hydrogen-terminated Si(111) surface, taking place within 100 femtoseconds of the plasmon excitation. Hot carrier transfer across the interface is observed as the plasmon decay takes place, and nearly 30% of holes are generated deep in the valence band of the semiconductor surface. The use of Wannier gauge in RT-TDDFT simulation is particularly convenient for gaining quantum-mechanical insights into non-equilibrium electron dynamics in complex heterogeneous systems.

     
    more » « less
  3. We use experimental and computational studies of core–shell metal–semiconductor and metal–molecule systems to investigate the mechanism of energy flow and energetic charge carrier generation in multicomponent plasmonic systems. We demonstrate that the rates of plasmon decay through the formation of energetic charge carriers are governed by two factors: (1) the intensity of the local plasmon induced electric fields at a specific location in the multicomponent nanostructure, and (2) the availability of direct, momentum conserved electronic excitations in the material located in that specific location. We propose a unifying physical framework that describes the flow of energy in all multicomponent plasmonic systems and leads us towards molecular control of the energy flow and excited charge carrier generation in these systems. 
    more » « less
  4. We demonstrate heterodyne detected transient vibrational sum frequency generation (VSFG) spectroscopy and use it to probe transient electric fields caused by interfacial charge transfer at organic semiconductor and metal interfaces. The static and transient VSFG spectra are composed of both non-resonant and molecular resonant responses. To further disentangle both contributions, we apply phase rotation to make the imaginary part of the spectra be purely molecular responses and the real part of the spectra be dominated by non-resonant signals. By separating non-resonant and molecular signals, we can track their responses to the transient electric-fields at interfaces independently. This technique combined with the phase sensitivity gained by heterodyne detection allows us to successfully identify three types of photoinduced dynamics at organic semiconductor/metal interfaces: coherent artifacts, optical excitations that do not lead to charge transfer, and direct charge transfers. The ability to separately follow the influence of built-in electric fields to interfacial molecules, regardless of strong nonresonant signals, will enable tracking of ultrafast charge dynamics with molecular specificities on molecular optoelectronics, photovoltaics, and solar materials. 
    more » « less
  5. Plasmonic materials are promising photocatalysts as they are well suited to convert light into hot carriers and heat. Hot electron transfer is suggested as the driving force in many plasmon-driven reactions. However, to date, there are no direct molecular measures of the rate and yield of plasmon-to-molecule electron transfer or energy of these electrons on the timescale of plasmon decay. Here, we use ultrafast and spectroelectrochemical surface-enhanced Raman spectroscopy to quantify electron transfer from a plasmonic substrate to adsorbed methyl viologen molecules. We observe a reduction yield of 2.4 to 3.5% on the picosecond timescale, with plasmon-induced potentials ranging from3.1 to4.5 mV. Excitingly, some of these reduced species are stabilized and persist for tens of minutes. This work provides concrete metrics toward optimizing material–molecule interactions for efficient plasmon-driven photocatalysis.

     
    more » « less