skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Effects of UAS Flight Speed on Lidar Snow Depth Estimation in a Heterogeneous Landscape
Recently, sensors deployed on unpiloted aerial systems (UAS) have provided snow depth estimates with high spatial resolution over watershed scales. While light detection and ranging (LiDAR) produces precise snow depth estimates for areas without vegetation cover, there has generally been poorer precision in forested areas. At a constant flight speed, the poorest precision within forests is observed beneath tree canopies that retain foliage into or through winter. The precision of lidar-derived elevation products is improved by increasing the sample size of ground returns but doing so reduces the spatial coverage of a mission due to limitations of battery power. We address the influence of flight speed on ground return density for baseline and snow-covered conditions and the subsequent effect on precision of snow depth estimates across a mixed landscape, while evaluating trade-offs between precision and bias. Prior to and following a snow event in December 2020, UAS flights were conducted at four different flight speeds over a region consisting of three contrasting land types: (1) open field, (2) deciduous forest, (3) conifer forest. For all cover types, we observed significant improvements in precision as flight speeds were reduced to 2 m s−1, as well as increases in the area over which a 2 cm snow depth precision was achieved. On the other hand, snow depth estimate differences were minimized at baseline flight speeds of 2 m s−1 and 4 m s−1 and snow-on flight speeds of 6 m s−1 over open fields and between 2 and 4 m s−1 over forest areas. Here, with consideration to precision and estimate bias within each cover type, we make recommendations for ideal flight speeds based on survey ground conditions and vegetation cover.  more » « less
Award ID(s):
2125868
PAR ID:
10532714
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Remote Sensing
Date Published:
Journal Name:
Remote Sensing
Volume:
15
Issue:
21
ISSN:
2072-4292
Page Range / eLocation ID:
5091
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate measurements of terrain elevation are crucial for many ecological applications. In this study, we sought to assess new global three-dimensional Earth observation data acquired by the spaceborne Light Detection and Ranging (LiDAR) missions Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI). For this, we examined the “ATLAS/ICESat-2 L3A Land and Vegetation Height”, version 5 (20 × 14 m and 100 × 14 m segments) and the “GEDI Level 2A Footprint Elevation and Height Metrics”, version 2 (25 m circle). We conducted our analysis across four land cover classes (bare soil, herbaceous, forest, savanna), and six forest types (temperate broad-leaved, temperate needle-leaved, temperate mixed, tropical upland, tropical floodplain, and tropical secondary forest). For assessment of terrain elevation estimates from spaceborne LiDAR data we used high resolution airborne data. Our results indicate that both LiDAR missions provide accurate terrain elevation estimates across different land cover classes and forest types with mean error less than 1 m, except in tropical forests. However, using a GEDI algorithm with a lower signal end threshold (e.g., algorithm 5) can improve the accuracy of terrain elevation estimates for tropical upland forests. Specific environmental parameters (terrain slope, canopy height and canopy cover) and sensor parameters (GEDI degrade flags, terrain estimation algorithm; ICESat-2 number of terrain photons, terrain uncertainty) can be applied to improve the accuracy of ICESat-2 and GEDI-based terrain estimates. Although the goodness-of-fit statistics from the two spaceborne LiDARs are not directly comparable since they possess different footprint sizes (100 × 14 m segment or 20 × 14 m segment vs. 25 m circle), we observed similar trends on the impact of terrain slope, canopy cover and canopy height for both sensors. Terrain slope strongly impacts the accuracy of both ICESat-2 and GEDI terrain elevation estimates for both forested and non-forested areas. In the case of GEDI the impact of slope is, however, partly caused by horizontal geolocation error. Moreover, dense canopies (i.e., canopy cover higher than 90%) affect the accuracy of spaceborne LiDAR terrain estimates, while canopy height does not, when considering samples over flat terrains. Our analysis of the accuracy and precision of current versions of spaceborne LiDAR products for different vegetation types and environmental conditions provides insights on parameter selection and estimated uncertainty to inform users of these key global datasets. 
    more » « less
  2. Abstract Snow disappearance date (SDD) affects the ecohydrological dynamics of montane forests, by altering water availability, forest fire regime, and the land surface energy budget. The forest canopy modulates SDD through competing processes; dense canopy intercepts snowfall and enhances longwave radiation while shading snowpack from shortwave radiation and sheltering it from the wind. Limited ground‐based observations of snow presence and absence have restricted our ability to unravel the dominant processes affecting SDD in montane forests. We apply a lidar‐derived method to estimate fractional snow cover area (fSCA) at two relatively warm sites in the Sierra Nevada and two colder sites in the Rocky Mountains, which we link to SDD. With the exception of late season snowpack and low fSCA, snow retention is longer under low vegetation density than under high vegetation density in both warm and cold sites. Warm forests consistently have longer snow retention in open areas compared to dense under canopy areas, particularly on south‐facing slopes. Cold forests tend to have longer snow retention under lower density canopy compared to open areas, particularly on north‐facing slopes. We use this empirical analysis to make process inferences and develop an initial framework to predict SDD that incorporates the role of topography and vegetation structure. Building on our framework will be necessary to provide better forest management recommendations for snowpack retention across complex terrain and heterogenous canopy structure. 
    more » « less
  3. Improving high-resolution (meter-scale) mapping of snow-covered areas in complex and forested terrains is critical to understanding the responses of species and water systems to climate change. Commercial high-resolution imagery from Planet Labs, Inc. (Planet, San Francisco, CA, USA) can be used in environmental science, as it has both high spatial (0.7–3.0 m) and temporal (1–2 day) resolution. Deriving snow-covered areas from Planet imagery using traditional radiometric techniques have limitations due to the lack of a shortwave infrared band that is needed to fully exploit the difference in reflectance to discriminate between snow and clouds. However, recent work demonstrated that snow cover area (SCA) can be successfully mapped using only the PlanetScope 4-band (Red, Green, Blue and NIR) reflectance products and a machine learning (ML) approach based on convolutional neural networks (CNN). To evaluate how additional features improve the existing model performance, we: (1) build on previous work to augment a CNN model with additional input data including vegetation metrics (Normalized Difference Vegetation Index) and DEM-derived metrics (elevation, slope and aspect) to improve SCA mapping in forested and open terrain, (2) evaluate the model performance at two geographically diverse sites (Gunnison, Colorado, USA and Engadin, Switzerland), and (3) evaluate the model performance over different land-cover types. The best augmented model used the Normalized Difference Vegetation Index (NDVI) along with visible (red, green, and blue) and NIR bands, with an F-score of 0.89 (Gunnison) and 0.93 (Engadin) and was found to be 4% and 2% better than when using canopy height- and terrain-derived measures at Gunnison, respectively. The NDVI-based model improves not only upon the original band-only model’s ability to detect snow in forests, but also across other various land-cover types (gaps and canopy edges). We examined the model’s performance in forested areas using three forest canopy quantification metrics and found that augmented models can better identify snow in canopy edges and open areas but still underpredict snow cover under forest canopies. While the new features improve model performance over band-only options, the models still have challenges identifying the snow under trees in dense forests, with performance varying as a function of the geographic area. The improved high-resolution snow maps in forested environments can support studies involving climate change effects on mountain ecosystems and evaluations of hydrological impacts in snow-dominated river basins. 
    more » « less
  4. null (Ed.)
    Traditional configurations for mounting Temperature–Humidity (TH) sensors on multirotor Unmanned Aerial Systems (UASs) often suffer from insufficient radiation shielding, exposure to mixed and turbulent air from propellers, and inconsistent aspiration while situated in the wake of the UAS. Descent profiles using traditional methods are unreliable (when compared to an ascent profile) due to the turbulent mixing of air by the UAS while descending into that flow field. Consequently, atmospheric boundary layer profiles that rely on such configurations are bias-prone and unreliable in certain flight patterns (such as descent). This article describes and evaluates a novel sensor housing designed to shield airborne sensors from artificial heat sources and artificial wet-bulbing while pulling air from outside the rotor wash influence. The housing is mounted above the propellers to exploit the rotor-induced pressure deficits that passively induce a high-speed laminar airflow to aspirate the sensor consistently. Our design is modular, accommodates a variety of other sensors, and would be compatible with a wide range of commercially available multirotors. Extensive flight tests conducted at altitudes up to 500 m Above Ground Level (AGL) show that the housing facilitates reliable measurements of the boundary layer phenomena and is invariant in orientation to the ambient wind, even at high vertical/horizontal speeds (up to 5 m/s) for the UAS. A low standard deviation of errors shows a good agreement between the ascent and descent profiles and proves our unique design is reliable for various UAS missions. 
    more » « less
  5. (1) Background: Global climate change is expected to significantly alter growing conditions along mountain gradients. Landscape ecological patterns are likely to shift significantly as species attempt to adapt to these changes. We evaluated the extent to which spatial (elevation and canopy cover) and temporal (decadal trend and El Niño–Southern Oscillation/Pacific Decadal Oscillation) factors impact seasonal snowmelt and forest community dynamics in the Western Hemlock–True Fir ecotone region of the Oregon Western Cascades, USA. (2) Methods: Tsuga heterophylla and Abies amabilis seedling locations were mapped three times over 20 years (2002–2022) on five sample transects strategically placed to cross the ecotone. Additionally, daily ground temperature readings were collected over 10 years for the five transects using 123 data loggers to estimate below-canopy snow metrics. (3) Results: Based on validation using time-lapse cameras, the data loggers proved highly reliable for estimating snow cover. The method reported fewer days of snow cover as compared to meteorological station-based snow products for the region, emphasizing the importance of direct under-canopy field observations of snow. Snow season variability was most significantly impacted temporally by cyclical ENSO/PDO climate patterns and spatially by differences in canopy cover within the ecotone. The associated seedling analysis identified clear sorting of species by elevation within the ecotone but reflected a lack of a long-term trend, as species dominance in the seedling strata did not significantly shift along the elevation gradient over the 20-year study. (4) Conclusions: The data logger-based approach provided estimates of snow cover at ecologically significant locations and fine enough spatial resolutions to allow for the study of forest regeneration dynamics. The results highlight the importance of long-term, understory snow measurements and the influence of climatic oscillations in understanding the vulnerability of mountain areas to the changing climate. 
    more » « less