Abstract Form-function relationships often have tradeoffs: if a material is tough, it is often inflexible, and vice versa. This is particularly relevant for the elephant trunk, where the skin should be protective yet elastic. To investigate how this is achieved, we used classical histochemical staining and second harmonic generation microscopy to describe the morphology and composition of elephant trunk skin. We report structure at the macro and micro scales, from the thickness of the dermis to the interaction of 10μm thick collagen fibers. We analyzed several sites along the length of the trunk, to compare and contrast the dorsal-ventral and proximal-distal skin morphologies and compositions. We find the dorsal skin of the elephant trunk can have keratin armor layers over 2mm thick, which is nearly 100 times the thickness of the equivalent layer in human skin. We also found that the structural support layer (the dermis) of elephant trunk contains a distribution of collagen-I (COL1) fibers in both perpendicular and parallel arrangement. The bimodal distribution of collagen is seen across all portions of the trunk, and is dissimilar from that of human skin where one orientation dominates within a body site. We hypothesize that this distribution of COL1 in the elephant trunk allows both flexibility and load-bearing capabilities. Additionally, when viewing individual fiber interaction of 10μm thick collagen, we find the fiber crossings per unit volume are five times more common than in human skin, suggesting that the fibers are entangled. We surmise that these intriguing structures permit both flexibility and strength in the elephant trunk. The complex nature of the elephant skin may inspire the design of materials that can combine strength and flexibility. 
                        more » 
                        « less   
                    
                            
                            Minimal Design of the Elephant Trunk as an Active Filament
                        
                    
    
            One of the key problems in active materials is the control of shape through actuation. A fascinating example of such control is the elephant trunk, a long, muscular, and extremely dexterous organ with multiple vital functions. The elephant trunk is an object of fascination for biologists, physicists, and children alike. Its versatility relies on the intricate interplay of multiple unique physical mechanisms and biological design principles. Here, we explore these principles using the theory of active filaments and build, theoretically, computationally, and experimentally, a minimal model that explains and accomplishes some of the spectacular features of the elephant trunk. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2318188
- PAR ID:
- 10532751
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Letters
- Volume:
- 132
- Issue:
- 24
- ISSN:
- 0031-9007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Elephants have long been observed to grip objects with their trunk, but little is known about how they adjust their strategy for different weights. In this study, we challenge a female African elephant at Zoo Atlanta to lift 20–60 kg barbell weights with only its trunk. We measure the trunk’s shape and wrinkle geometry from a frozen elephant trunk at the Smithsonian. We observe several strategies employed to accommodate heavier weights, including accelerating less, orienting the trunk vertically, and wrapping the barbell with a greater trunk length. Mathematical models show that increasing barbell weights are associated with constant trunk tensile force and an increasing barbell-wrapping surface area due to the trunk’s wrinkles. Our findings may inspire the design of more adaptable soft robotic grippers that can improve grip using surface morphology such as wrinkles.more » « less
- 
            Abstract Elephant trunks are capable of complex, multimodal deformations, allowing them to perform task‐oriented high‐degree‐of‐freedom (DOF) movements pertinent to the field of soft actuators. Despite recent advances, most soft actuators can only achieve one or two deformation modes, limiting their motion range and applications. Inspired by the elephant trunk musculature, a liquid crystal elastomer (LCE)‐based multi‐fiber design strategy is proposed for soft robotic arms in which a discrete number of artificial muscle fibers can be selectively actuated, achieving multimodal deformations and transitions between modes for continuous movements. Through experiments, finite element analysis (FEA), and a theoretical model, the influence of LCE fiber design on the achievable deformations, movements, and reachability of trunk‐inspired robotic arms is studied. Fiber geometry is parametrically investigated for 2‐fiber robotic arms and the tilting and bending of these arms is characterized. A 3‐fiber robotic arm is additionally studied with a simplified fiber arrangement analogous to that of an actual elephant trunk. The remarkably broad range of deformations and the reachability of the arm are discussed, alongside transitions between deformation modes for functional movements. It is anticipated that this design and actuation strategy will serve as a robust method to realize high‐DOF soft actuators for various engineering applications.more » « less
- 
            Trunk strength, endurance, and dynamic control may have an effect on anterior cruciate ligament (ACL) injury rates and biomechanical ACL loading variables during athletic tasks. Individuals responsible for training athletes at risk of ACL injuries should implement training programs that address these components of athletic performance. In ski racers, deficits in trunk flexion/extension strength and decreased trunk flexion/extension strength ratios have been identified as ACL injury risk factors. Trunk strength training alone is not sufficient to decrease biomechanical ACL loading, and there is no clear association between trunk endurance and ACL injury risks. Trunk dynamic control training may improve trunk and knee movements associated with decreased ACL loading during athletic tasks. Dynamic, unanticipated, and perturbed trunk functional assessments and training are recommended to challenge the trunk more during athletic tasks. Injury prevention programs should involve exercises using unstable surfaces, sports-related dual tasks, and perturbations to address trunk dynamic control. More investigation is still needed to further understand the associations between trunk neuromuscular functions and ACL injury risks during athletic tasks.more » « less
- 
            Muscular hydrostats, such as octopus arms or elephant trunks, lack bones entirely, endowing them with exceptional dexterity and reconfigurability. Key to their unmatched ability to control nearly infinite degrees of freedom is the architecture into which muscle fibers are weaved. Their arrangement is, effectively, the instantiation of a sophisticated mechanical program that mediates, and likely facilitates, the control and realization of complex, dynamic morphological reconfigurations. Here, by combining medical imaging, biomechanical data, live behavioral experiments, and numerical simulations, an octopus-inspired arm made of 200 continuous muscle groups is synthesized, exposing “mechanically intelligent” design and control principles broadly pertinent to dynamics and robotics. Such principles are mathematically understood in terms of storage, transport, and conversion of topological quantities, effected into complex 3D motions via simple muscle activation templates. These are in turn composed into higher-level control strategies that, compounded by the arm’s compliance, are demonstrated across challenging manipulation tasks, revealing surprising simplicity and robustness.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    