Flexible octopus arms exhibit an exceptional ability to coordinate large numbers of degrees of freedom and perform complex manipulation tasks. As a consequence, these systems continue to attract the attention of biologists and roboticists alike. In this article, we develop a three-dimensional model of a soft octopus arm, equipped with biomechanically realistic muscle actuation. Internal forces and couples exerted by all major muscle groups are considered. An energy-shaping control method is described to coordinate muscle activity so as to grasp and reach in three-dimensional space. Key contributions of this article are as follows: (i) modelling of major muscle groups to elicit three-dimensional movements; (ii) a mathematical formulation for muscle activations based on a stored energy function; and (iii) a computationally efficient procedure to design task-specific equilibrium configurations, obtained by solving an optimization problem in the Special Euclidean group . Muscle controls are then iteratively computed based on the co-state variable arising from the solution of the optimization problem. The approach is numerically demonstrated in the physically accurate software environmentElastica. Results of numerical experiments mimicking observed octopus behaviours are reported. 
                        more » 
                        « less   
                    
                            
                            Topology, dynamics, and control of a muscle-architected soft arm
                        
                    
    
            Muscular hydrostats, such as octopus arms or elephant trunks, lack bones entirely, endowing them with exceptional dexterity and reconfigurability. Key to their unmatched ability to control nearly infinite degrees of freedom is the architecture into which muscle fibers are weaved. Their arrangement is, effectively, the instantiation of a sophisticated mechanical program that mediates, and likely facilitates, the control and realization of complex, dynamic morphological reconfigurations. Here, by combining medical imaging, biomechanical data, live behavioral experiments, and numerical simulations, an octopus-inspired arm made of 200 continuous muscle groups is synthesized, exposing “mechanically intelligent” design and control principles broadly pertinent to dynamics and robotics. Such principles are mathematically understood in terms of storage, transport, and conversion of topological quantities, effected into complex 3D motions via simple muscle activation templates. These are in turn composed into higher-level control strategies that, compounded by the arm’s compliance, are demonstrated across challenging manipulation tasks, revealing surprising simplicity and robustness. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10571730
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 121
- Issue:
- 41
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            While hydrogen-rich materials have been demonstrated to exhibit high Tcsuperconductivity at high pressures, there is an ongoing search for ternary, quaternary, and more chemically complex hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the Fm m RH structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH X Y] is based on a Pm m structure showing moderately high Tc, where the Tcestimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH ) X YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing Tc. The third class [(R H )(R H )X YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These design principles and associated model structures provide flexibility to optimize both Tcand the structural stability of complex hydrides.more » « less
- 
            Abstract Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( ), substrate shear stiffness ( ), shear anisotropy ( ), and tensile anisotropy ( ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase in and with increasing muscle length. While in active tension, we observed increasing and decreasing and during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction.more » « less
- 
            We combine synchrotron-based infrared absorption and Raman scattering spectroscopies with diamond anvil cell techniques and first-principles calculations to explore the properties of hafnia under compression. We find that pressure drives HfO :7%Y from the mixed monoclinic ( ) antipolar orthorhombic ( ) phase to pure antipolar orthorhombic ( ) phase at approximately 6.3 GPa. This transformation is irreversible, meaning that upon release, the material is kinetically trapped in the metastable state at 300 K. Compression also drives polar orthorhombic ( ) hafnia into the tetragonal ( ) phase, although the latter is not metastable upon release. These results are unified by an analysis of the energy landscape. The fact that pressure allows us to stabilize targeted metastable structures with less Y stabilizer is important to preserving the flat phonon band physics of pure HfO .more » « less
- 
            Pattern formation in spin systems with continuous-rotational symmetry (CRS) provides a powerful platform to study emergent complex magnetic phases and topological defects in condensed-matter physics. However, its understanding and correlation with unconventional magnetic order along with high-resolution nanoscale imaging are challenging. Here, we employ scanning nitrogen vacancy (NV) magnetometry to unveil the morphogenesis of spin cycloids at both the local and global scales within a single ferroelectric domain of (111)-oriented BiFeO3, which is a noncollinear antiferromagnet, resulting in formation of a glassy labyrinthine pattern. We find that the domains of locally oriented cycloids are interconnected by an array of topological defects and exhibit isotropic energy landscape predicted by first-principles calculations. We propose that the CRS of spin-cycloid propagation directions within the (111) drives the formation of the labyrinthine pattern and the associated topological defects such as antiferromagnetic skyrmions. Unexpectedly, reversing the as-grown ferroelectric polarization from [ ] to [111] produces a noncycloidal NV image contrast which could be attributed to either the emergence of a uniformly magnetized state or a reversal of the cycloid polarity. These findings highlight that (111)-oriented BiFeO3is not only important for studying the fascinating subject of pattern formation but could also be utilized as an ideal platform for integrating novel topological defects in the field of antiferromagnetic spintronics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    