Abstract This is a roadmap article with multiple contributors on different aspects of embodying intelligence and computing in the mechanical domain of functional materials and structures. Overall, an IOP roadmap article is a broad, multi-author review with leaders in the field discussing the latest developments, commissioned by the editorial board. The intention here is to cover various topics of adaptive structural and material systems with mechano-intelligence in the overall roadmap, with twelve sections in total. These sections cover topics from materials to devices to systems, such as computational metamaterials, neuromorphic materials, mechanical and material logic, mechanical memory, soft matter computing, physical reservoir computing, wave-based computing, morphological computing, mechanical neural networks, plant-inspired intelligence, pneumatic logic circuits, intelligent robotics, and embodying mechano-intelligence for engineering functionalities via physical computing. In this paper, we view all the 2-page sections with equal contributions to the overall roadmap article and thus list the authorship on the front page via alphabetical order of their last names. On the other hand, for each individual section, the authors decide on their own the order of authorship.
more »
« less
Material and Physical Reservoir Computing for Beyond CMOS Electronics: Quo Vadis?
Traditional computing is based on an engineering approach that imposes logical states and a computational model upon a physical substrate. Physical or material computing, on the other hand, harnesses and exploits the inherent, naturally-occurring proper- ties of a physical substrate to perform a computation. To do so, reservoir computing is often used as a computing paradigm. In this review and position paper, we take stock of where the field currently stands, delineate opportunities and challenges for future research, and outline steps on how to get material reservoir to the next level. The findings are relevant for beyond CMOS and beyond von Neumann architectures, ML, AI, neuromorphic systems, and computing with novel devices and circuits.
more »
« less
- Award ID(s):
- 2318139
- PAR ID:
- 10532868
- Publisher / Repository:
- ACM
- Date Published:
- Format(s):
- Medium: X
- Location:
- NANOARCH 2023, Dresden, Germany
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In the field of soft robotics, harnessing the nonlinear dynamics of soft and compliant bodies as a computational resource to enable embodied intelligence and control is known as morphological computation. Physical reservoir computing (PRC) is a true instance of morphological computation wherein; a physical nonlinear dynamic system is used as a fixed reservoir to perform complex computational tasks. These dynamic reservoirs can be used to approximate nonlinear dynamical systems and even perform machine learning tasks. By numerical simulation, this study illustrates that an origami meta-material can also be used as a dynamic reservoir for pattern generation, output modulation, and input sensing. These results could pave the way for intelligently designed origami-based robots that interact with the environment through a distributed network of sensors and actuators. This embodied intelligence will enable the next generations of soft robots to autonomously coordinate and modulate their activities, such as locomotion gait generation and limb manipulation while resisting external disturbances.more » « less
-
null (Ed.)Abstract A new paradigm called physical reservoir computing has recently emerged, where the nonlinear dynamics of high-dimensional and fixed physical systems are harnessed as a computational resource to achieve complex tasks. Via extensive simulations based on a dynamic truss-frame model, this study shows that an origami structure can perform as a dynamic reservoir with sufficient computing power to emulate high-order nonlinear systems, generate stable limit cycles, and modulate outputs according to dynamic inputs. This study also uncovers the linkages between the origami reservoir’s physical designs and its computing power, offering a guideline to optimize the computing performance. Comprehensive parametric studies show that selecting optimal feedback crease distribution and fine-tuning the underlying origami folding designs are the most effective approach to improve computing performance. Furthermore, this study shows how origami’s physical reservoir computing power can apply to soft robotic control problems by a case study of earthworm-like peristaltic crawling without traditional controllers. These results can pave the way for origami-based robots with embodied mechanical intelligence .more » « less
-
We demonstrate using micromagnetic simulations that a nanomagnet array excited by surface acoustic waves (SAWs) can work as a reservoir. An input nanomagnet is excited with focused SAW and coupled to several nanomagnets, seven of which serve as output nanomagnets. To evaluate memory effect and computing capability, we study the short-term memory (STM) and parity check (PC) capacities, respectively. The SAW (4 GHz carrier frequency) amplitude is modulated to provide a sequence of sine and square waves of 100 MHz frequency. The responses of the selected output nanomagnets are processed by reading the envelope of their magnetization states, which is used to train the output weights using the regression method. For classification, a random sequence of 100 square and sine wave samples is used, of which 80% are used for training, and the rest are used for testing. We achieve 100% training and 100% testing accuracy. The average STM and PC are calculated to be ∼4.69 and ∼5.39 bits, respectively, which is indicative of the proposed acoustically driven nanomagnet oscillator array being well suited for physical reservoir computing applications. The energy dissipation is ∼2.5 times lower than a CMOS-based echo-state network. Furthermore, the reservoir is able to accurately predict Mackey-Glass time series up to several time steps ahead. Finally, the ability to use high frequency SAW makes the nanomagnet reservoir scalable to small dimensions, and the ability to modulate the envelope at a lower frequency (100 MHz) adds flexibility to encode different signals beyond the sine/square waves classification and Mackey-Glass predication tasks demonstrated here.more » « less
-
Physical Reservoir Computing (PRC) is an unconventional computing paradigm that exploits the nonlinear dynamics of reservoir blocks to perform temporal data classification and prediction tasks. Here, we show with simulations that patterned thin films hosting skyrmion can implement energy-efficient straintronic reservoir computing (RC) in the presence of room-temperature thermal perturbation. This RC block is based on strain-induced nonlinear breathing dynamics of skyrmions, which are coupled to each other through dipole and spin-wave interaction. The nonlinear and coupled magnetization dynamics were exploited to perform temporal data classification and prediction. Two performance metrics, namely Short-Term Memory (STM) and Parity Check (PC) capacity are studied and shown to be promising (4.39 and 4.62 respectively), in addition to showing it can classify sine and square waves with 100% accuracy. These demonstrate the potential of such skyrmion based PRC. Furthermore, our study shows that nonlinear magnetization dynamics and interaction through spin-wave and dipole coupling have a strong influence on STM and PC capacity, thus explaining the role of physical interaction in a dynamical system on its ability to perform RC.more » « less
An official website of the United States government

