skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A direct-drive five-bar manipulator with tuned directional first-order kinematics for low energy consumption in vertical loading
The kinematic configuration space of a manipulator determines the set of all possible motions that may occur, and its differential properties have a strong, albeit indirect, influence on both static and dynamic performance. By viewing first-order kinematics as a field of Jacobian-defined ellipses across a workspace, a novel two degree-of-freedom manipulator was designed, and is tested in this paper for its benefits. The manipulator exhibits a field of ellipses that biases transmission characteristics in Cartesian directions of the end-effector. The horizontal direction is biased toward speed in order to move across the width of the workspace quickly, while the vertical direction is biased toward force production in order to resist gravitational loads. The latter bias endows the manipulator with load capacity in the absence of gears. Such an exclusion can forego the extra weight, complexity, backlash, transmission losses, and fragility of gearboxes. Additionally, a direct drive set-up improves backdrivability and transparency. The latter is relevant to applications that involve interacting with the environment or people. Our novel design is set through an array of theoretical and experimental performance studies in comparison to a conventional direct drive manipulator. The experimental results showed a 3.75× increase in payload capacity, a 2× increase in dynamic tracking accuracy, a 2.07× increase in dynamic cycling frequency, and at least a 3.70× reduction in power consumption, considering both static and dynamic experiments.  more » « less
Award ID(s):
2144732
PAR ID:
10532899
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
The International Journal of Robotics Research
ISSN:
0278-3649
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Lenarčič, Jadran; Husty, Manfred (Ed.)
    The multidirectional transmission characteristics of a five-bar linkage can be visualized by plotting Jacobian-defined velocity ellipses inside its workspace. The orientation, size, and aspect ratio of these ellipses indicate directional force and velocity multiplication from the actuators to the end-effector. Our broader goal is approximate dimensional synthesis to achieve desired ellipses. On a workspace bound, the minor axis of a velocity ellipse collapses while the major axis aligns tangential to the bound. Interior to the workspace, ellipses vary with continuity. Therefore, the shape of a workspace bound influences the interior ellipses. The workspace bounds of a five-bar linkage are formed from segment of four-bar coupler curves (the locus of endpoint positions while the five-bar is held in output singularity conditions) and circular segments. Therefore, interior ellipses can be influenced by the path synthesis of four-bar linkages that represent the five-bar situated with certain links held colinear (the output singularity conditions). This paper details the synthesis of these four-bar coupler curves for forming the workspace bounds of a five-bar in order to influence its interior ellipses. Our approach employs saddle graphs that detail the connectivity of critical points over an optimization function. 
    more » « less
  2. Lenarčič, Jadran; Husty, Manfred (Ed.)
    The multidirectional transmission characteristics of a five-bar linkage can be visualized by plotting Jacobian-defined velocity ellipses inside its workspace. The orientation, size, and aspect ratio of these ellipses indicate directional force and velocity multiplication from the actuators to the end-effector. Our broader goal is approximate dimensional synthesis to achieve desired ellipses. On a workspace bound, the minor axis of a velocity ellipse collapses while the major axis aligns tangential to the bound. Interior to the workspace, ellipses vary with continuity. Therefore, the shape of a workspace bound influences the interior ellipses. The workspace bounds of a five-bar linkage are formed from segments of four-bar coupler curves (the locus of endpoint positions while the five-bar is held in output singularity conditions) and circular segments. Therefore, interior ellipses can be influenced by the path synthesis of four-bar linkages that represent the five-bar situated with certain links held colinear (the output singularity conditions). This paper details the synthesis of these four-bar coupler curves for forming the workspace bounds of a five-bar in order to influence its interior ellipses. Our approach employs saddle graphs that detail the connectivity of critical points over an optimization function. 
    more » « less
  3. This paper presents the concept, implementation, feedback control, and experimental verification of a noncontact magnetic manipulator that relies on a controllable array of permanent magnets to manipulate magnetized objects inside a workspace encircled by the magnets. To gain control over the aggregate magnetic field inside the workspace, the position of each magnet is independently controlled by a linear servomotor that dynamically changes the distance between that magnet and the workspace. By feedback control of the array of servomotors, the magnetic force applied to a magnetized object inside the workspace is dynamically adjusted to steer it along a desired reference trajectory. The successful steering of a small magnetic bead is demonstrated by experiments performed on a planar magnetic manipulator, designed and prototyped with six linear servomotors and six permanent magnets. 
    more » « less
  4. Soft robots have garnered great interest in recent years due to their ability to navigate complex environments and enhance safety during unplanned collisions. However, their softness typically limits the forces they can apply and payloads they can carry, compared to traditional rigid-link robots. In this paper we seek to create a hybrid manipulator that can switch between a state in which it acts as a soft robot, and a state in which it has a series of selectively stiffenable links. The latter state, accomplished by solidifying chambers of low melting point metal alloy within the robot, is in some ways analogous to a traditional rigid-link manipulator. It also has the added benefit that each “link” can be set to a desired straight or curved shape before solidification and re-shaped when desired. Thermoelectric heat pumps enable local heating and cooling of the alloy, and tendons running along the robot enable actuation. Using a simple two-link prototype, we illustrate how alloy melting and solidification can be used to modify the robot’s workspace and payload capacity. 
    more » « less
  5. The transmission properties of multi-degree-of-freedom mechanisms can be tuned by shaping velocity ellipses throughout their workspace. Velocity ellipses are the image of a circle in the actuator velocity space mapped by the Jacobian into end-effector velocities. In this work, two machine learning methods using convolutional neural network architectures are proposed to synthesize planar 2R mechanism designs that approximately produce the desired velocity ellipses. An ensemble of image-based regression models is trained in a supervised fashion to output multiple 2R designs that approximate the specified ellipses. As an alternative to this approach, a second physics-informed neural network is constructed to train an ensemble of encoder models without specifying the 2R link lengths. During training, a decoder model that approximates the kinematics (physics) of the 2R is used to find how well the 2R design output by the encoder approximates the specified ellipses. These models are used to obtain multiple 2R designs that produce ellipses suitable for legged locomotion tasks and some preliminary results are presented. 
    more » « less