Abstract The process of unstable mass transfer in a stellar binary can result in either a complete merger of the stars or successful removal of the donor envelope leaving a surviving more compact binary. Luminous red novae (LRNe) are the class of optical transients believed to accompany such merger/common envelope events. Past works typically model LRNe using analytic formulae for supernova light curves that make assumptions (e.g., radiation-dominated ejecta, neglect of hydrogen recombination energy) not justified in stellar mergers due to the lower velocities and specific thermal energy of the ejecta. We present a one-dimensional model of LRN light curves that accounts for these effects. Consistent with observations, we find that LRNe typically possess two light-curve peaks, an early phase powered by initial thermal energy of the hot, fastest ejecta layers and a later peak powered by hydrogen recombination from the bulk of the ejecta. We apply our model to a sample of LRNe to infer their ejecta properties (mass, velocity, and launching radius) and compare them to the progenitor donor star properties from pretransient imaging. We define the maximum luminosity achievable for a given donor star in the limit that the entire envelope is ejected, finding that several LRNe violate this limit. Shock interaction between the ejecta and predynamical mass loss may provide an additional luminosity source to alleviate this tension. Our model can also be applied to the merger of planets with stars or stars with compact objects.
more »
« less
Rethinking Thorne–Żytkow Object Formation: Assembly via Common Envelope in Field Binaries
Abstract Thorne–Żytkow objects (TŻOs), hypothetical merger products in which a neutron star is embedded in a stellar core, are traditionally considered steady-state configurations. Their assembly, especially through dynamical channels, is not well understood. The predominant focus in the literature has been on the observational signatures related to the evolution and long-term fate of TŻOs, with their initial formation often treated as a given. However, the foundational calculations supporting the existence of TŻOs assume nonrotating spherically symmetric initial conditions that we find to be inconsistent with a binary merger scenario. In this work, we explore the implications of postmerger dynamics in TŻO formation scenarios with field binary progenitors, specifically the role that angular momentum transport during the common envelope phase plays in constraining the possible merger products, using the tools of stellar evolution and three-dimensional hydrodynamics. We also propose an alternative steady-state outcome for these mergers: the thin-envelope TŻO, an equilibrium solution consisting of a low-mass spherical envelope supported by the accretion disk luminosity of a central stellar-mass black hole. These configurations may be of interest to upcoming time-domain surveys as potential X-ray sources that may be preceded by a series of bright transient events.
more »
« less
- Award ID(s):
- 2307710
- PAR ID:
- 10532934
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 971
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 132
- Size(s):
- Article No. 132
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The recent detection of GW190521 stimulated ideas on how to populate the predicted black hole (BH) pair-instability (PI) mass gap. One proposal is the dynamical merger of two stars below the PI regime forming a star with a small core and an oversized envelope. We outline the main challenges this scenario faces to form one BH in the gap. In particular, the core needs to avoid growing during the merger, and the merger product needs to retain enough mass, including in the subsequent evolution, and at core collapse (CC). We explore this scenario with detailed stellar evolution calculations, starting with ad hoc initial conditions enforcing no core growth during the merger. We find that these massive merger products are likely to be helium-rich and spend most of their remaining lifetime within regions of instabilities in the Herzsprung–Russell diagram, such as luminous blue variable eruptions. An energetic estimate of the amount of mass loss neglecting the back reaction of the star suggests that the total amount of mass that can be removed at low metallicity is ≲1 M ⊙ . This is small enough that at CC our models are retaining sufficient mass to form BHs in the PI gap similar to the recent ones detected by LIGO/Virgo. However, mass loss at the time of merger, the resulting core structure, and the mass loss at CC still need to be quantified for these models to confirm the viability of this scenario.more » « less
-
We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers.more » « less
-
ABSTRACT A significant fraction of isolated white dwarfs host magnetic fields in excess of a MegaGauss. Observations suggest that these fields originate in interacting binary systems where the companion is destroyed thus leaving a singular, highly magnetized white dwarf. In post-main-sequence evolution, radial expansion of the parent star may cause orbiting companions to become engulfed. During the common envelope phase, as the orbital separation rapidly decreases, low-mass companions will tidally disrupt as they approach the giant’s core. We hydrodynamically simulate the tidal disruption of planets and brown dwarfs, and the subsequent accretion disc formation, in the interior of an asymptotic giant branch star. Compared to previous steady-state simulations, the resultant discs form with approximately the same mass fraction as estimated but have not yet reached steady state and are morphologically more extended in height and radius. The long-term evolution of the disc and the magnetic fields generated therein require future study.more » « less
-
Common-envelope evolution is a stage in binary system evolution in which a giant star engulfs a companion. The standard energy formalism is an analytical framework to estimate the amount of energy transferred from the companion's shrinking orbit into the envelope of the star that engulfed it. We show analytically that this energy transfer is larger than predicted by the standard formalism. As the orbit of the companion shrinks, the mass it encloses becomes smaller, and the companion is less bound than if the enclosed mass had remained constant. Therefore, more energy must be transferred to the envelope for the orbit to shrink further. We derive a revised energy formalism that accounts for this effect, and discuss its consequences in two contexts: the formation of neutron star binaries, and the engulfment of planets and brown dwarfs by their host stars. The companion mass required to eject the stellar envelope is smaller by up to 50% , leading to differences in common-envelope evolution outcomes. The energy deposition in the outer envelope of the star, which is related to the transient luminosity and duration, is up to a factor of ≈7 higher. Common-envelope efficiency values above unity, as defined in the literature, are thus not necessarily unphysical, and result at least partly from an incomplete description of the energy deposition. The revised energy formalism presented here can improve our understanding of stellar merger and common-envelope observations and simulations.more » « less
An official website of the United States government
