Mastering the concept of distributed forces is vital for students who are pursuing a major involving engineering mechanics. Misconceptions related to distributed forces that are typically acquired in introductory Physics courses should be corrected to increase student success in subsequent mechanics coursework. The goal of this study was to develop and assess a guided instructional activity using augmented reality (AR) technology to improve undergraduate engineering students' understanding of distributed forces. The AR app was accompanied by a complementary activity to guide and challenge students to model objects as beams with progressively increasing difficulty. The AR tool allowed students to (a) model a tabletop as a beam with multiple distributed forces, (b) visualize the free body diagram, and (c) compute the external support reactions. To assess the effectiveness of the activity, 43 students were allocated to control and treatment groups using an experimental nonequivalent groups preactivity/postactivity test design. Of the 43 students, 35 participated in their respective activity. Students in the control group collaborated on traditional problem‐solving, while those in the treatment group engaged in a guided activity using AR. Students' knowledge of distributed forces was measured using their scores on a 10‐item test instrument. Analysis of covariance was utilized to analyze postactivity test scores by controlling for the preactivity test scores. The treatment group demonstrated a significantly greater improvement in postactivity test scores than that of the control group. The measured effect size was 0.13, indicating that 13% of the total variance in the postactivity test scores can be attributed to the activity. Though the effect size was small, the results suggest that a guided AR activity can be more effective in improving student learning outcomes than traditional problem‐solving.
This content will become publicly available on August 13, 2025
This research aims to explore the prediction of student learning outcomes in Augmented Reality (AR) educational settings, focusing on engineering education, by analyzing pupil dilation and problem-solving time as key indicators. In this research, we have created an innovative AR learning platform through the incorporation of eye-tracking technology into the Microsoft HoloLens 2. This enhanced learning platform enables the collection of data on pupil dilation and problem-solving duration as students engage in AR-based learning activities. In this study, we hypothesize that pupil dilation and problem-solving time could be significant predictors of student performance in the AR learning environment. The results of our study suggest that problem-solving time may be a critical factor in predicting student learning success for materials involving procedural knowledge at low difficulty levels. Additionally, both pupil dilation and problem-solving time are predictive indicators of student learning outcomes when dealing with predominantly procedural knowledge at high difficulty levels.
more » « less- PAR ID:
- 10532958
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 68
- Issue:
- 1
- ISSN:
- 1071-1813
- Format(s):
- Medium: X Size: p. 589-595
- Size(s):
- p. 589-595
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models.more » « less
-
Practice plays a critical role in learning engineering dynamics. Typical practice in a dynamics course involves solving textbook problems. These problems can impose great cognitive load on underprepared students because they have not mastered constituent knowledge and skills required for solving whole problems. For these students, learning can be improved by being engaged in deliberate practice. Deliberate practice refers to a type of practice aimed at improving specific constituent knowledge or skills. Compared to solving whole problems requiring the simultaneous use of multiple constituent skills, deliberate practice is usually focused on one component skill at a time, which results in less cognitive load and more specificity. Contemporary theories of expertise development have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and various professional fields. Concurrently, there is an emerging method for improving learning efficiency of novices by combining deliberate practice with cognitive load theory (CLT), a cognitive-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those that receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course), and students are more likely to leave engineering after taking mechanics courses. Deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance. The goal of the present study is to develop deliberate practice techniques to improve learning effectiveness and to reduce cognitive load. Our pilot study results revealed that the student mental effort scores were negatively correlated with their knowledge test scores with r = -.29 (p < .05) after using deliberate practice strategies. This supports the claim that deliberate practice can improve student learning while reducing cognitive load. In addition, the higher the students’ knowledge test scores, the lower their mental effort was when taking the tests. In other words, the students who used deliberate practice strategies had better learning results with less cognitive load. To design deliberate practice, we often need to analyze students’ persistent problems caused by faulty mental models, also referred to as an intuitive mental model, and misconceptions. In this study, we continue to conduct an in-depth diagnostic process to identify students’ common mistakes and associated intuitive mental models. We then use the results to develop deliberate practice problems aimed at changing students’ cognitive strategies and mental models.more » « less
-
null (Ed.)To date, there are currently many variations of inquiry-based instruction including problem-based learning (PBL), lecture prior to problem solving, and case-based learning (CBL). While each claim to support problem-solving, they also include different levels of student- centeredness and instructor support. From an educational perspective, further clarity is needed to determine which model best supports learning outcomes such as conceptual knowledge, causal reasoning, and self-efficacy. While various meta-analyses have been conducted to ascertain how inquiry-based instruction compares with lecture-based approaches, there are few studies that directly compare these methods. To address this gap, this study looked at the effects of PBL, lecture prior to problem-solving, and CBL on students conceptual knowledge, causal reasoning, and self-efficacy (N = 91). While no significant difference was found on self-efficacy, the results found that learners in the PBL group performed highest on conceptual knowledge. In terms of causal reasoning, the PBL group outperformed other conditions on correctly identified connections. However, the PBL condition also had the highest number of incorrectly identified concepts. Implications for theory and practice are also discussed.more » « less
-
null (Ed.)Learning is usually conceptualized as a process during which new information is processed in working memory to form knowledge structures called schemas, which are stored in long-term memory. Practice plays a critical role in developing schemas through learning-by-doing. Contemporary expertise development theories have highlighted the influence of deliberate practice (DP) on achieving exceptional performance in sports, music, and different professional fields. Concurrently, there is an emerging method for improving learning efficiency by combining deliberate practice with cognitive load theory (CLT), a cognition-architecture-based theory for instructional design. Mechanics is a foundation for most branches of engineering. It serves to develop problem-solving skills and consolidate understanding of other subjects, such as applied mathematics and physics. Mechanics has been a challenging subject. Students need to understand governing principles to gain conceptual knowledge and acquire procedural knowledge to apply these principles to solve problems. Due to the difficulty in developing conceptual and procedural knowledge, mechanics courses are among those which receive high DFW rates (percentage of students receiving a grade of D or F or Withdrawing from a course) and students are more likely to leave engineering after taking mechanics courses. Since deliberate practice can help novices develop good representations of the knowledge needed to produce superior problem solving performance, this study is to evaluate how deliberate practice helps students learn mechanics during the process of schema acquisition and consolidation. Considering cognitive capacity limitations, we will apply cognitive load theory to develop deliberate practice to help students build declarative and procedural knowledge without exceeding their working memory limitations. We will evaluate the effects of three practice strategies based on CLT on the schema acquisition and consolidation in two mechanics courses (i.e., Statics and Dynamics). Examples and assessment results will be provided to evaluate the effectiveness of the practice strategies as well as the challenges.more » « less