skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Honey bee beards: internal and external factors driving mass thermoregulatory evacuation
Abstract Honeybees are master thermoregulators, capable of maintaining nest homeostasis across fluctuating ambient temperatures. When workers must cool their nest, they use multiple thermoregulatory behaviors (e.g., fanning, collecting water), but bearding, where hundreds to thousands of workers evacuate their nest and form a bivouac outside, is relatively unexplored. Here, we (1) describe natural bearding patterns, (2) experimentally manipulate colonies to determine what impacts beard size and timing, and (3) explore how workers dissipate back into their nest. We show that bearding occurs daily in hot weather, but the largest beards consistently happen in the evening/night, between the hours of 1800 and 2400. Beards are located around the nest entrance, but workers bias their position toward the shaded side of the nest box. As colony size increases, beard size and duration also increase, but the proportion of the colony bearding does not increase with colony size. Colonies with and without brood still cast beards; brood presence/absence did not impact beard size or duration. After noticing that beards tend to dissipate at sunrise, we experimentally showed that beards induced in the afternoon dissipate within 1–2 h, whereas beards induced in the evening remain overnight (10+ h). Bearding overnight, however, does carry risks for developing brood inside, as nest temperatures dropped below the optimal range, until the beard dissipated at sunrise. What cues workers use to depart the beard remain unknown, but experimentally illuminating colonies at night did not induce beards to dissipate. Our results suggest that bearding is an individual decision, not one that is coordinated across the colony. Still, these individual actions result in a dramatic collective response that colonies employ to reduce the temperature of their nest. Here, we show how and when colonies use bearding, despite its risks.  more » « less
Award ID(s):
2216835
PAR ID:
10612546
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Insectes Sociaux
ISSN:
0020-1812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Circadian rhythms in honey bees are involved in various processes that impact colony survival. For example, young nurses take care of the brood constantly throughout the day and lack circadian rhythms. At the same time, foragers use the circadian clock to remember and predict food availability in subsequent days. Previous studies exploring the ontogeny of circadian rhythms of workers showed that the onset of rhythms is faster in the colony environment (~2 days) than if workers were immediately isolated after eclosion (7–9 days). However, which specific environmental factors influenced the early development of worker circadian rhythms remained unknown. We hypothesized that brood nest temperature plays a key role in the development of circadian rhythmicity in young workers. Our results show that young workers kept at brood nest-like temperatures (33–35 °C) in the laboratory develop circadian rhythms faster and in greater proportion than bees kept at lower temperatures (24–26 °C). In addition, we examined if the effect of colony temperature during the first 48 h after emergence is sufficient to increase the rate and proportion of development of circadian rhythmicity. We observed that twice as many individuals exposed to 35 °C during the first 48 h developed circadian rhythms compared to individuals kept at 25 °C, suggesting a critical developmental period where brood nest temperatures are important for the development of the circadian system. Together, our findings show that temperature, which is socially regulated inside the hive, is a key factor that influences the ontogeny of circadian rhythmicity of workers. 
    more » « less
  2. Form follows function throughout the development of an organism. This principle should apply beyond the organism to the nests they build, but empirical studies are lacking. Honeybees provide a uniquely suited system to study nest form and function throughout development because we can image the three-dimensional structure repeatedly and non-destructively. Here, we tracked nest-wide comb growth in six colonies over 45 days (control colonies) and found that colonies have a stereotypical process of development that maintains a spheroid nest shape. To experimentally test if nest structure is important for colony function, we shuffled the nests of an additional six colonies, weekly rearranging the comb positions and orientations (shuffled colonies). Surprisingly, we found no differences between control and shuffled colonies in multiple colony performance metrics—worker population, comb area, hive weight and nest temperature. However, using predictive modelling to examine how workers allocate comb to expand their nests, we show that shuffled colonies compensate for these disruptions by accounting for the three-dimensional structure to reconnect their nest. This suggests that nest architecture is more flexible than previously thought, and that superorganisms have mechanisms to compensate for drastic architectural perturbations and maintain colony function. 
    more » « less
  3. Leppla, Norman (Ed.)
    Abstract Bombus vosnesenskii Radowszkowski, 1862 is one of three bumble bee species commercially available for pollination services in North America; however, little is documented about B. vosnesenskii colony life cycle or the establishment of ex situ rearing, mating, and overwintering practices. In this study, we documented nest success, colony size, and gyne production; recorded the duration of mating events; assessed overwintering survival of mated gynes; and evaluated second-generation nest success for colonies established from low- and high-elevation wild-caught B. vosnesenskii gynes. Of the 125 gynes installed, 62.4% produced brood cells (nest initiation) and 43.2% had at least 1 worker eclose (nest establishment). High-elevation B. vosnesenskii gynes had significantly higher nest initiation and establishment success than low-elevation gynes. However, low-elevation colonies were significantly larger with queens producing more gynes on average. Mating was recorded for 200 low-elevation and 37 high-elevation gynes, resulting in a mean duration of 62 and 51 min, respectively. Mated gynes were then placed into cold storage for 54 days to simulate overwintering, which resulted in 59.1% of low-elevation gynes surviving and 91.9% of high-elevation gynes surviving. For second-generation low-elevation gynes, 26.4% initiated nesting and 14.3% established nesting. Second-generation high-elevation gynes did not initiate nesting despite CO2 narcosis treatments. Overall, these results increase our understanding of B. vosnesenskii nesting, mating, and overwintering biology from 2 elevations. Furthermore, this study provides information on successful husbandry practices that can be used by researchers and conservationists to address knowledge gaps and enhance the captive rearing of bumble bees. 
    more » « less
  4. Honey bees are renowned architects. The workers use expensive wax secretions to build their nests, which reach a mature, seemingly steady state, relatively quickly. After nest expansion is complete, workers do not tear down combs completely and begin anew, but there is the possibility they may make subtle changes like adding, removing, and repositioning existing wax. Previous work has focused on nest initiation and nest expansion, but here we focus on mature nests that have reached a steady-state. To investigate subtle changes to comb shape over time, we tracked six colonies from nest initiation through maturity (211 days), photographing their combs every 1–2 weeks. By aligning comb images over time, we show that workers continuously remove wax from the comb edges, thereby reducing total nest area over time. All six colonies trimmed comb edges, and 98.3% of combs were reduced (n = 59). Comb reduction began once workers stopped expanding their nests and continued throughout the experiment. The extent to which a comb was reduced did not correlate with its position within the nest, comb perimeter, or comb area. It is possible that workers use this removed wax as a reserve wax source, though this remains untested. These results show that the superorganism nest is not static; workers are constantly interacting with their nest, and altering it, even after nest expansion is complete. 
    more » « less
  5. Abstract Behavior is shaped by genes, environment, and evolutionary history in different ways. Nest architecture is an extended phenotype that results from the interaction between the behavior of animals and their environment. Nests built by ants are extended phenotypes that differ in structure among species and among colonies within a species, but the source of these differences remains an open question. To investigate the impact of colony identity (genetics), evolutionary history (species), and the environment on nest architecture, we compared how two species of harvester ants, Pogonomyrmex californicus and Veromessor andrei, construct their nests under different environmental conditions. For each species, we allowed workers from four colonies to excavate nests in environments that differed in temperature and humidity for seven days. We then created casts of each nest to compare nest structures among colonies, between species, and across environmental conditions. We found differences in nest structure among colonies of the same species and between species. Interestingly, however, environmental conditions did not have a strong influence on nest structure in either species. Our results suggest that extended phenotypes are shaped more strongly by internal factors, such as genes and evolutionary history, and are less plastic in response to the abiotic environment, like many physical and physiological phenotypes. 
    more » « less