skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Effect of Conserved Charges on the Coalescence Sum Rule of Directed Flow
Recently, the rapidity-odd directed flow (v1) of produced hadrons (K−, ϕ, p¯, Λ¯, Ξ¯+, Ω−, and Ω¯+) has been studied. Several combinations of these produced hadrons, with very small mass differences but differences in the net electric charge (Δq) and net strangeness (ΔS) on the two sides, have been considered. A difference in v1 between the two sides of these combinations (Δv1) has been proposed as a consequence of the electromagnetic field produced in relativistic heavy-ion collisions, especially if Δv1 increases with Δq. Our study is performed to understand the effect of the coalescence sum rule (CSR) on Δv1. We point out that the CSR leads to Δv1=cqΔq+cSΔS, where the coefficients cq and cS reflect the Δv1 of produced quarks. Equivalently, one can write Δv1=cqΔq+cBΔB, involving the difference in the net baryon number ΔB, where the CSR gives cB=−3cS. We then propose two methods to extract the coefficients for the Δq and ΔS dependences of Δv1.  more » « less
Award ID(s):
2310021 2012947
PAR ID:
10533166
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Universe
Volume:
10
Issue:
3
ISSN:
2218-1997
Page Range / eLocation ID:
112
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cheshkov, C; Guernane, R; Maire, A (Ed.)
    Recently, seven produced hadron species have been used to construct multiple hadron sets with given differences in the net electric charge (∆q) and strangeness (∆S) between the two sides. A nonzero directed flow difference △v1has been proposed as a consequence of the electromagnetic field produced in relativistic heavy ion collisions. Previously, we have shown with quark coalescence that Av1 and the slope difference △v′1depend linearly on both △qand ∆Swith zero intercept. Here we emphasize that a two-dimensional function or fit is necessary for extracting the △q- and △S-dependences of △v1. On the other hand, a one-dimensional fit gives a different value for the slope parameter of the ∆q- or ∆S-dependence. Furthermore, a one-dimensional fit is incorrect because its slope parameter depends on the arbitrary scaling factor of a hadron set and is thus ill-defined. We use test data of △v1to explicitly demonstrate these points. 
    more » « less
  2. Abstract The small Cys-rich protein metallothionein (MT) binds several metal ions in clusters within two domains. While the affinity of MT for both toxic and essential metals has been well studied, the thermodynamics of this binding has not. We have used isothermal titration calorimetry measurements to quantify the change in enthalpy (ΔH) and change in entropy (ΔS) when metal ions bind to the two ubiquitous isoforms of MT. The seven Zn2+ that bind sequentially at pH 7.4 do so in two populations with different coordination thermodynamics, an initial four that bind randomly with individual tetra-thiolate coordination and a subsequent three that bind with bridging thiolate coordination to assemble the metal clusters. The high affinity of MT for both populations is due to a very favourable binding entropy that far outweighs an unfavourable binding enthalpy. This originates from a net enthalpic penalty for Zn2+ displacement of protons from the Cys thiols and a favourable entropic contribution from the displaced protons. The thermodynamics of other metal ions binding to MT were determined by their displacement of Zn2+ from Zn7MT and subtraction of the Zn2+-binding thermodynamics. Toxic Cd2+, Pb2+, and Ag+, and essential Cu+, also bind to MT with a very favourable binding entropy but a net binding enthalpy that becomes increasingly favourable as the metal ion becomes a softer Lewis acid. These thermodynamics are the origin of the high affinity, selectivity, and domain specificity of MT for these metal ions and the molecular basis for their in vivo binding competition. 
    more » « less
  3. Parameter estimation from observable or experimental data is a crucial stage in any modeling study. Identifiability refers to one’s ability to uniquely estimate the model parameters from the available data. Structural unidentifiability in dynamic models, the opposite of identifiability, is associated with the notion of degeneracy where multiple parameter sets produce the same pattern. Therefore, the inverse function of determining the model parameters from the data is not well defined. Degeneracy is not only a mathematical property of models, but it has also been reported in biological experiments. Classical studies on structural unidentifiability focused on the notion that one can at most identify combinations of unidentifiable model parameters. We have identified a different type of structural degeneracy/unidentifiability present in a family of models, which we refer to as the Lambda-Omega (Λ-Ω) models. These are an extension of the classical lambda-omega (λ-ω) models that have been used to model biological systems, and display a richer dynamic behavior and waveforms that range from sinusoidal to square wave to spike like. We show that the Λ-Ω models feature infinitely many parameter sets that produce identical stable oscillations, except possible for a phase shift (reflecting the initial phase). These degenerate parameters are not identifiable combinations of unidentifiable parameters as is the case in structural degeneracy. In fact, reducing the number of model parameters in the Λ-Ω models is minimal in the sense that each one controls a different aspect of the model dynamics and the dynamic complexity of the system would be reduced by reducing the number of parameters. We argue that the family of Λ-Ω models serves as a framework for the systematic investigation of degeneracy and identifiability in dynamic models and for the investigation of the interplay between structural and other forms of unidentifiability resulting on the lack of information from the experimental/observational data. 
    more » « less
  4. Examination of historical simulations from CMIP6 models shows substantial pre‐industrial to present‐day changes in ocean heat (ΔH), salinity (ΔS), oxygen (ΔO2), dissolved inorganic carbon (ΔDIC), chlorofluorocarbon‐12 (ΔCFC12), and sulfur hexafluoride (ΔSF6). The spatial structure of the changes and the consistency among models differ among tracers: ΔDIC, ΔCFC12, and ΔSF6all are largest near the surface, are positive throughout the thermocline with weak changes below, and there is good agreement among the models. In contrast, the largest ΔH, ΔS, and ΔO2are not necessarily at the surface, their sign varies within the thermocline, and there are large differences among models. These differences between the two groups of tracers are linked to climate‐driven changes in the ocean transport, with this tracer “redistribution” playing a significant role in changes in ΔH, ΔS, and ΔO2but not the other tracers. The spatial structure, and differences between models, of changes in age tracers are consistent with ΔH, ΔS, and ΔO2, supporting the hypothesis that redistribution plays a major role for these tracers. Further, the impact of the vertical displacement of isopycnals (heave) plays a major role in the differing impact of redistribution between the two groups, with this process causing insignificant changes to ΔDIC, ΔCFC12, and ΔSF6due to their weak spatial gradients. A similar multi‐tracer analysis of observations could provide insights into the relative role of the addition and redistribution of tracers in the ocean. 
    more » « less
  5. This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons Ξ and Ξ ¯ + and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN = 5.02 TeV . The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less