skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of baryon number transport dynamics and strangeness conservation effects using Ω-hadron correlations
Abstract In nuclear collisions at RHIC energies, an excess of$$\Omega$$ Ω hyperons over$$\bar{\Omega }$$ Ω ¯ is observed, indicating that$$\Omega$$ Ω has a net baryon number despitesand$$\bar{s}$$ s ¯ quarks being produced in pairs. The baryon number in$$\Omega$$ Ω may have been transported from the incident nuclei and/or produced in the baryon-pair production of$$\Omega$$ Ω with other types of anti-hyperons such as$$\bar{\Xi }$$ Ξ ¯ . To investigate these two scenarios, we propose to measure the correlations between$$\Omega$$ Ω andKand between$$\Omega$$ Ω and anti-hyperons. We use two versions, the default and string-melting, of a multiphase transport (AMPT) model to illustrate the method for measuring the correlation and to demonstrate the general shape of the correlation. We present the$$\Omega$$ Ω -hadron correlations from simulated Au+Au collisions at$$\sqrt{s_\text{NN}} = 7.7$$ s NN = 7.7 and$$14.6 \ \textrm{GeV}$$ 14.6 GeV and discuss the dependence on the collision energy and on the hadronization scheme in these two AMPT versions. These correlations can be used to explore the mechanism of baryon number transport and the effects of baryon number and strangeness conservation on nuclear collisions.  more » « less
Award ID(s):
2310021
PAR ID:
10533167
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Nuclear Science and Techniques
Volume:
35
Issue:
7
ISSN:
1001-8042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ d σ ( c c ¯ ) / d y , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ f ( c h c ) , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ s NN = 5.02 Te V at midrapidity ($$-0.96<0.04$$ - 0.96 < y < 0.04 in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ D 0 ,$$\textrm{D}^{+}$$ D + ,$$\textrm{D}_\textrm{s}^{+}$$ D s + , and$$\mathrm {J/\psi }$$ J / ψ mesons, and$$\Lambda _\textrm{c}^{+}$$ Λ c + and$$\Xi _\textrm{c}^{0}$$ Ξ c 0 baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ d σ ( c c ¯ ) / d y = 219.6 ± 6.3 ( stat . ) - 11.8 + 10.5 ( syst . ) - 2.9 + 8.3 ( extr . ) ± 5.4 ( BR ) ± 4.6 ( lumi . ) ± 19.5 ( rapidity shape ) + 15.0 ( Ω c 0 ) mb , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ s = 5.02 and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ e + e - and$$\mathrm {e^{-}p}$$ e - p collisions. The$$p_\textrm{T}$$ p T -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ R pPb ( c c ¯ ) = 0.91 ± 0.04 ( stat . ) - 0.09 + 0.08 ( syst . ) - 0.03 + 0.05 ( extr . ) ± 0.03 ( lumi . ) , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions. 
    more » « less
  2. Abstract Event-by-event fluctuations of the event-wise mean transverse momentum,$$\langle p_{\textrm{T}}\rangle $$ p T , of charged particles produced in proton–proton (pp) collisions at$$\sqrt{s}$$ s = 5.02 TeV, Xe–Xe collisions at$$\sqrt{s_{\textrm{NN}}}$$ s NN = 5.44 TeV, and Pb–Pb collisions at$$\sqrt{s_{\textrm{NN}}}$$ s NN = 5.02 TeV are studied using the ALICE detector based on the integral correlator$$\langle \!\langle \Delta p_\textrm{T}\Delta p_\textrm{T}\rangle \!\rangle $$ Δ p T Δ p T . The correlator strength is found to decrease monotonically with increasing produced charged-particle multiplicity measured at midrapidity in all three systems. In Xe–Xe and Pb–Pb collisions, the multiplicity dependence of the correlator deviates significantly from a simple power-law scaling as well as from the predictions of the HIJING and AMPT models. The observed deviation from power-law scaling is expected from transverse radial flow in semicentral to central Xe–Xe and Pb–Pb collisions. In pp collisions, the correlation strength is also studied by classifying the events based on the transverse spherocity,$$S_0$$ S 0 , of the particle production at midrapidity, used as a proxy for the presence of a pronounced back-to-back jet topology. Low-spherocity (jetty) events feature a larger correlation strength than those with high spherocity (isotropic). The strength and multiplicity dependence of jetty and isotropic events are well reproduced by calculations with the PYTHIA 8 and EPOS LHC models. 
    more » « less
  3. Abstract The transverse momentum ($$p_{\textrm{T}}$$ p T ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ Ξ c 0 ¯ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ π + Ξ - in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 nuclear modification factor ($$R_{\textrm{pPb}}$$ R pPb ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ R pPb of$$\mathrm {\Lambda _{c}^{+}}$$ Λ c + baryons. The ratios between the$$p_{\textrm{T}}$$ p T -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ Ξ c 0 baryons and those of$$\mathrm {D^0}$$ D 0 mesons and$$\mathrm {\Lambda _{c}^{+}}$$ Λ c + baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ Ξ c 0 baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ p T -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ Ξ c 0 -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ p T = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity. 
    more » « less
  4. Abstract A search for leptoquark pair production decaying into$$te^- \bar{t}e^+$$ t e - t ¯ e + or$$t\mu ^- \bar{t}\mu ^+$$ t μ - t ¯ μ + in final states with multiple leptons is presented. The search is based on a dataset ofppcollisions at$$\sqrt{s}=13~\text {TeV} $$ s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb$$^{-1}$$ - 1 . Four signal regions, with the requirement of at least three light leptons (electron or muon) and at least two jets out of which at least one jet is identified as coming from ab-hadron, are considered based on the number of leptons of a given flavour. The main background processes are estimated using dedicated control regions in a simultaneous fit with the signal regions to data. No excess above the Standard Model background prediction is observed and 95% confidence level limits on the production cross section times branching ratio are derived as a function of the leptoquark mass. Under the assumption of exclusive decays into$$te^{-}$$ t e - ($$t\mu ^{-}$$ t μ - ), the corresponding lower limit on the scalar mixed-generation leptoquark mass$$m_{\textrm{LQ}_{\textrm{mix}}^{\textrm{d}}}$$ m LQ mix d is at 1.58 (1.59) TeV and on the vector leptoquark mass$$m_{{\tilde{U}}_1}$$ m U ~ 1 at 1.67 (1.67) TeV in the minimal coupling scenario and at 1.95 (1.95) TeV in the Yang–Mills scenario. 
    more » « less
  5. Abstract The azimuthal ($$\Delta \varphi $$ Δ φ ) correlation distributions between heavy-flavor decay electrons and associated charged particles are measured in pp and p–Pb collisions at$$\sqrt{s_{\mathrm{{NN}}}} = 5.02$$ s NN = 5.02 TeV. Results are reported for electrons with transverse momentum$$4<16$$ 4 < p T < 16 $$\textrm{GeV}/c$$ GeV / c  and pseudorapidity$$|\eta |<0.6$$ | η | < 0.6 . The associated charged particles are selected with transverse momentum$$1<7$$ 1 < p T < 7 $$\textrm{GeV}/c$$ GeV / c , and relative pseudorapidity separation with the leading electron$$|\Delta \eta | < 1$$ | Δ η | < 1 . The correlation measurements are performed to study and characterize the fragmentation and hadronization of heavy quarks. The correlation structures are fitted with a constant and two von Mises functions to obtain the baseline and the near- and away-side peaks, respectively. The results from p–Pb collisions are compared with those from pp collisions to study the effects of cold nuclear matter. In the measured trigger electron and associated particle kinematic regions, the two collision systems give consistent results. The$$\Delta \varphi $$ Δ φ distribution and the peak observables in pp and p–Pb collisions are compared with calculations from various Monte Carlo event generators. 
    more » « less