Abstract We present multi‐platform observations of plasma cloak, O+ outflows, kinetic Alfven waves (KAWs), and auroral oval for the geomagnetic storm on 17 March 2015. During the storm's main phase, we observed a generally symmetric equatorward motion of the auroral oval in both hemispheres, corresponding to the plasmasphere erosion and inward motion of the plasma sheet. Consequently, Van Allen Probes became immersed within the plasma sheet for extended hours and repeatedly observed correlated KAWs and O+ outflows. The KAWs contain adequate energy flux toward the ionosphere to energize the observed outflow ions. Adiabatic particle tracing suggests that the O+ outflows are directly from the nightside auroral oval and that the energization is through a quasi‐static potential drop. The O+ outflows from the nightside auroral oval were adequate (‐ #/‐s) and prompt (several minutes) to explain the newly formed plasma cloak, suggesting that they were a dominant initial source of plasma cloak during this storm.
more »
« less
Assessing the Sources of the O + in the Plasma Sheet
Abstract To study the average contributions of the cusp outflow through the lobes and of the nightside auroral outflow to the O+in the plasma sheet (PS), we performed a statistical study of tailward streaming O+in the lobes, plasma sheet boundary layer|the plasma sheet boundary layer (PSBL) and the PS, using MMS/Hot Plasma Composition Analyzer (HPCA) data from 2017 to 2020. Similar spatial patterns illustrate the entry of cusp‐origin O+from the lobes to the PS through the PSBL. There is an YGSM‐dependent energy pattern for the lobe O+, with low‐energy O+streaming closer to the tail center and high energy (1–3 keV) O+streaming near the flanks. Low energy (1–100 eV) O+from the nightside auroral oval is identified in the near‐Earth PSBL/PS with high‐density (>0.02 cm−3), and energetic (>3 keV) streaming O+with similar density (∼0.013 cm−3) is observed further out on the duskside of the PSBL/PS. The rest of the nightside auroral O+in the PSBL is mixed with O+coming in from the lobe, making it difficult to distinguish the source. We estimated the contributions of the different sources of H+and O+ions through the PS between 7 and 17 RE, using estimates from this work and data extracted from previous studies. We conclude that, during quiet times, the majority of the near‐Earth PS H+are from the cusps, the polar wind and Earthward convection from the distant tail. Similarly, while the O+in the same region has a mixed source, cusp origin outflow provides the highest contribution.
more »
« less
- PAR ID:
- 10533237
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 8
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract One of the major processes that solar wind drives is the outflow and escape of ions from the planetary atmospheres. The major ion species in the upper ionospheres of both Earth and Mars is O+, and hence it is more likely to dominate the escape process. On Earth, due to a strong intrinsic magnetic field, the major ion outflow pathways are through the cusp, polar cap, and the auroral oval. In contrast, Mars has an induced magnetosphere, where the ionosphere is in direct contact with the shocked solar wind plasma. Therefore, physical processes underlying the ion energization and escape rates are expected to be different on Mars as compared to Earth. In the current work, we study the near-simultaneous ion outflow event from both Earth and Mars during the passage of a stream interaction region/high-speed stream (SIR/HSS) during 2016 May, when both the planets were approximately aligned on the same side of the Sun. The SIR/HSS propagation was recorded by spacecraft at the Sun–Earth L1 point and Mars Express at 1.5 au. During the passage of the SIR, the dayside and nightside ion outflows at Earth were observed by Van Allen Probes and Magnetospheric Multiscale Mission orbiters, respectively. At Mars, the ion energization at different altitudes was observed by the STATIC instrument on board the MAVEN orbiter. We observe evidence for the enhanced ion outflow from both Earth and Mars during the passage of the SIR, and identify the dominant drivers of the ion outflow.more » « less
-
Abstract High‐intensity long‐duration continuous auroral electrojet (AE) activity (HILDCAA) events are associated with intensification of relativistic electron fluxes in the inner magnetosphere. The physical mechanisms of this intensification are not well established yet. We study observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft in the near earth plasma sheet at radial distances of 10 Earth radii, at the transition region between tail and dipole‐like magnetic configurations, referred to as the nightside transition region (NTR), during a HILDCAA event. The observations revealed recurrent dipolarizations accompanied by plasma flow vortices, impulsive electric field enhancements, and increases in electron fluxes at energies of 100 keV up to 1 MeV. Electron pitch angle (PA) distributions at THEMIS showed field‐aligned flux enhancements at energies of 100 keV. This indicates a Fermi‐type energization. Arguably, electrons gain energy up to MeV via repetitive bouncing through the acceleration region. Energization of ions was insignificant which led to 1. We suggest that the increased ratio leads to a local increase of the Hall conductivity in the conjugate ionosphere, which causes ionospheric current intensification and strong , consistent with observations.more » « less
-
Abstract The magnetotail lobe region at Mercury is characterized by low plasma density and low magnetic field variability compared to the nightside magnetosheath and central plasma sheet. At Mercury, as well as other planets, lobe magnetic fields play a crucial role in storing and releasing magnetic flux in response to changing upstream solar wind conditions such as interplanetary magnetic field (IMF) orientation and solar wind dynamic pressure (Pdyn). This makes the region significant for studying the magnetospheric interaction with the intense solar wind conditions at Mercury's orbit. Here, we identify and analyze magnetotail lobe observations made by the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft during its 4 years orbital phase. We empirically determined a set of criteria using magnetometer (MAG) and the Fast Imaging Plasma Spectrometer instruments onboard MESSENGER to identify lobe magnetic field intervals. From 3,332 MESSENGER orbits, we identify 1,242 lobe field intervals. We derive an expression for the average lobe magnetic field strength in nanotesla with respect to radial distance downtail:Blobe(r) = (135 ± 8) * r(−2.1±0.3) + (31 ± 8). The lobe magnetic field exhibits both small‐scale (∼3 min) and orbit‐to‐orbit (∼8–12 hr) variability in magnetic field strength compared to this averaged field strength expression. The orbit‐to‐orbit variability in lobe field strength is not significantly correlated with estimated IMF orientation, but is directly correlated withPdyn. Thus, our findings provide evidence for the pressure balance between the inward facingPdynon the nightside magnetopause and the outward facing magnetic pressure supplied by the lobes.more » « less
-
Abstract We investigate a 15‐day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp‐aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter‐streaming ions and double loss‐cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual‐lobe reconnection. Our finding forces a significant re‐evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF.more » « less
An official website of the United States government
