skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.  more » « less
Award ID(s):
2155170 2238563
PAR ID:
10533432
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Chemical Reviews
ISSN:
0009-2665
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Super resolution microscopy was developed to overcome the Abbe diffraction limit, which effects conventional optical microscopy, in order to study the smaller components of biological systems. In recent years nanomaterials have been explored as luminescent probes for super resolution microscopy, as many have advantages over traditional fluorescent dye molecules. This review will summarize several different types of nanomaterial probes, covering quantum dots, carbon dots, and dye doped nanoparticles. For the purposes of this review the term “nanoparticle” will be limited to polymer-based, protein-based, and silica-based nanoparticles, including core–shell structured nanoparticles. Luminescent nanomaterials have shown promise as super-resolution probes, and continued research in this area will yield new advances in both materials science and biochemical microscopy at the nanometer scale. 
    more » « less
  2. The long luminescence lifetimes and sharp emission bands of luminescent lanthanide complexes have long been recognized as invaluable strengths for sensing and imaging in complex aqueous biological or environmental media. Herein we discuss the recent developments of these probes for sensing metal ions and, increasingly, anions. Underappreciated in the field, buffers and metal hydrolysis influence the response of many responsive lanthanide probes. The inherent complexities arising from these interactions are further discussed. 
    more » « less
  3. Single-molecule fluorescence approaches have revolutionized biological and materials microscopy. However, many questions can only be addressed by multicolor imaging of multiple targets, a capability that is limited by the small subset of available, well-performing, and spectrally-distinct fluorescent probes. We recently introduced an alternative single-molecule multiplexing approach termed blinking-based multiplexing (BBM), wherein individual molecules are classified on the basis of their intrinsic blinking dynamics. We demonstrate accurate (>93.5%) binary classification of spectrally-overlapped rhodamine and quantum dot emitters using BBM, even when substantial blinking heterogeneity is observed. Classification can be accomplished using change point detection (CPD) analysis of blinking dynamics or a deep learning (DL) algorithm, the latter of which provides up to 96.6% accuracy. Here, we use CPD and DL algorithms to probe the excitation power, environmental, and molecular dependence of BBM. In addition to providing new opportunities in single-molecule spectroscopy and imaging, BBM represents a new take on single-molecule research, where blinking dynamics can be harnessed for more than just traditional localization or nanoreporting. 
    more » « less
  4. Luminescent lanthanides possess ideal properties for biological imaging, including long luminescent lifetimes and emission within the optical window. Here, we report a novel approach to responsive luminescent Tb( iii ) probes that involves direct modulation of the antenna excited triplet state energy. If the triplet energy lies too close to the 5 D 4 Tb( iii ) excited state (20 500 cm −1 ), energy transfer to 5 D 4 competes with back energy transfer processes and limits lanthanide-based emission. To validate this approach, a series of pyridyl-functionalized, macrocyclic lanthanide complexes were designed, and the corresponding lowest energy triplet states were calculated using density functional theory (DFT). Subsequently, three novel constructs L3 (nitro-pyridyl), L4 (amino-pyridyl) and L5 (fluoro-pyridyl) were synthesized. Photophysical characterization of the corresponding Gd( iii ) complexes revealed antenna triplet energies between 25 800 and 30 400 cm −1 and a 500-fold increase in quantum yield upon conversion of Tb( L3 ) to Tb( L4 ) using the biologically relevant analyte H 2 S. The corresponding turn-on reaction can be monitored using conventional, small-animal optical imaging equipment in presence of a Cherenkov radiation emitting isotope as an in situ excitation source, demonstrating that antenna triplet state energy modulation represents a viable approach to biocompatible, Tb-based optical turn-on probes. 
    more » « less
  5. Due to their N -substitution, peptoids are generally regarded as resistant to biological degradation, such as enzymatic and hydrolytic mechanisms. This stability is an especially attractive feature for therapeutic development and is a selling point of many previous biological studies. However, another key mode of degradation remains to be fully explored, namely oxidative degradation mediated by reactive oxygen and nitrogen species (ROS/RNS). ROS and RNS are biologically relevant in numerous contexts where biomaterials may be present. Thus, improving understanding of peptoid oxidative susceptibility is crucial to exploit their full potential in the biomaterials field, where an oxidatively-labile but enzymatically stable molecule can offer attractive properties. Toward this end, we demonstrate a fundamental characterization of sequence-defined peptoid chains in the presence of chemically generated ROS, as compared to ROS-susceptible peptides such as proline and lysine oligomers. Lysine oligomers showed the fastest degradation rates to ROS and the enzyme trypsin. Peptoids degraded in metal catalyzed oxidation conditions at rates on par with poly(prolines), while maintaining resistance to enzymatic degradation. Furthermore, lysine-containing peptide–peptoid hybrid molecules showed tunability in both ROS-mediated and enzyme-mediated degradation, with rates intermediate to lysine and peptoid oligomers. When lysine-mimetic side-chains were incorporated into a peptoid backbone, the rate of degradation matched that of the lysine peptide oligomers, but remained resistant to enzymatic degradation. These results expand understanding of peptoid degradation to oxidative and enzymatic mechanisms, and demonstrate the potential for peptoid incorporation into materials where selectivity towards oxidative degradation is necessary, or directed enzymatic susceptibility is desired. 
    more » « less