skip to main content


This content will become publicly available on May 13, 2025

Title: FedCross: Towards Accurate Federated Learning via Multi-Model Cross-Aggregation
As a promising distributed machine learning paradigm, Federated Learning (FL) has attracted increasing attention to deal with data silo problems without compromising user privacy. By adopting the classic one-to-multi training scheme (i.e., FedAvg), where the cloud server dispatches one single global model to multiple involved clients, conventional FL methods can achieve collaborative model training without data sharing. However, since only one global model cannot always accommodate all the incompatible convergence directions of local models, existing FL approaches greatly suffer from inferior classification accuracy. To address this issue, we present an efficient FL framework named FedCross, which uses a novel multi-to-multi FL training scheme based on our proposed multi-model cross-aggregation approach. Unlike traditional FL methods, in each round of FL training, FedCross uses multiple middleware models to conduct weighted fusion individually. Since the middleware models used by FedCross can quickly converge into the same flat valley in terms of loss landscapes, the generated global model can achieve a well-generalization. Experimental results on various well-known datasets show that, compared with state-of-the-art FL methods, Fed Cross can significantly improve FL accuracy within both IID and non-IID scenarios without causing additional communication overhead.  more » « less
Award ID(s):
2217104
PAR ID:
10533471
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-1715-2
Page Range / eLocation ID:
2137 to 2150
Subject(s) / Keyword(s):
Federated learning, gradient divergence loss landscape multi-model cross-aggregation non-IID
Format(s):
Medium: X
Location:
Utrecht, Netherlands
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Federated learning (FL) is an emerging machine learning paradigm. With FL, distributed data owners aggregate their model updates to train a shared deep neural network collaboratively, while keeping the training data locally. However, FL has little control over the local data and the training process. Therefore, it is susceptible to poisoning attacks, in which malicious or compromised clients use malicious training data or local updates as the attack vector to poison the trained global model. Moreover, the performance of existing detection and defense mechanisms drops significantly in a scaled-up FL system with non-iid data distributions. In this paper, we propose a defense scheme named CONTRA to defend against poisoning attacks, e.g., label-flipping and backdoor attacks, in FL systems. CONTRA implements a cosine-similarity-based measure to determine the credibility of local model parameters in each round and a reputation scheme to dynamically promote or penalize individual clients based on their per-round and historical contributions to the global model. With extensive experiments, we show that CONTRA significantly reduces the attack success rate while achieving high accuracy with the global model. Compared with a state-of-the-art (SOTA) defense, CONTRA reduces the attack success rate by 70% and reduces the global model performance degradation by 50%. 
    more » « less
  2. A central theme in federated learning (FL) is the fact that client data distributions are often not independent and identically distributed (IID), which has strong implications on the training process. While most existing FL algorithms focus on the conventional non-IID setting of class imbalance or missing classes across clients, in practice, the distribution differences could be more complex, e.g., changes in class conditional (domain) distributions. In this paper, we consider this complex case in FL wherein each client has access to only one domain distribution. For tasks such as domain generalization, most existing learning algorithms require access to data from multiple clients (i.e., from multiple domains) during training, which is prohibitive in FL. To address this challenge, we propose a federated domain translation method that generates pseudodata for each client which could be useful for multiple downstream learning tasks. We empirically demonstrate that our translation model is more resource-efficient (in terms of both communication and computation) and easier to train in an FL setting than standard domain translation methods. Furthermore, we demonstrate that the learned translation model enables use of state-of-the-art domain generalization methods in a federated setting, which enhances accuracy and robustness to increases in the synchronization period compared to existing methodology. 
    more » « less
  3. Federated learning (FL) enables multiple participants to train a global machine learning model without sharing their private training data. Peer-to-peer (P2P) FL advances existing centralized FL paradigms by eliminating the server that aggregates local models from participants and then updates the global model. However, P2P FL is vulnerable to (i) honest-but-curious participants whose objective is to infer private training data of other participants, and (ii) Byzantine participants who can transmit arbitrarily manipulated local models to corrupt the learning process. P2P FL schemes that simultaneously guarantee Byzantine resilience and preserve privacy have been less studied. In this paper, we develop Brave, a protocol that ensures Byzantine Resilience And priVacy-prEserving property for P2P FL in the presence of both types of adversaries. We show that Brave preserves privacy by establishing that any honest-but-curious adversary cannot infer other participants’ private data by observing their models. We further prove that Brave is Byzantine-resilient, which guarantees that all benign participants converge to an identical model that deviates from a global model trained without Byzantine adversaries by a bounded distance. We evaluate Brave against three state-of-the-art adversaries on a P2P FL for image classification tasks on benchmark datasets CIFAR10 and MNIST. Our results show that global models learned with Brave in the presence of adversaries achieve comparable classification accuracy to global models trained in the absence of any adversary. 
    more » « less
  4. Although Federated Learning (FL) enables global model training across clients without compromising their raw data, due to the unevenly distributed data among clients, existing Federated Averaging (FedAvg)-based methods suffer from the problem of low inference performance. Specifically, different data distributions among clients lead to various optimization directions of local models. Aggregating local models usually results in a low-generalized global model, which performs worse on most of the clients. To address the above issue, inspired by the observation from a geometric perspective that a well-generalized solution is located in a flat area rather than a sharp area, we propose a novel and heuristic FL paradigm named FedMR (Federated Model Recombination). The goal of FedMR is to guide the recombined models to be trained towards a flat area. Unlike conventional FedAvg-based methods, in FedMR, the cloud server recombines collected local models by shuffling each layer of them to generate multiple recombined models for local training on clients rather than an aggregated global model. Since the area of the flat area is larger than the sharp area, when local models are located in different areas, recombined models have a higher probability of locating in a flat area. When all recombined models are located in the same flat area, they are optimized towards the same direction. We theoretically analyze the convergence of model recombination. Experimental results show that, compared with state-of-the-art FL methods, FedMR can significantly improve the inference accuracy without exposing the privacy of each client. 
    more » « less
  5. null (Ed.)
    Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMA based wireless networks than other existing schemes within the same learning time. 
    more » « less