In this paper, we generalize a bi-Lipschitz extension result of David and Semmes from Euclidean spaces to complete metric measure spaces with controlled geometry (Ahlfors regularity and supporting a Poincaré inequality). In particular, we find sharp conditions on metric measure spaces X so that any bi-Lipschitz embedding of a subset of the real line into X extends to a bi-Lipschitz embedding of the whole line. Along the way, we prove that if the complement of an open subset Y of X has small Assouad dimension, then it is a uniform domain. Finally, we prove a quantitative approximation of continua in X by bi-Lipschitz curves. 
                        more » 
                        « less   
                    
                            
                            Decomposing multitwists
                        
                    
    
            The Decomposition Problem in the class $$LIP(\S^2)$$ is to decompose any bi-Lipschitz map $$f:\S^2 \to \S^2$$ as a composition of finitely many maps of arbitrarily small isometric distortion. In this paper, we construct a decomposition for certain bi-Lipschitz maps which spiral around every point of a Cantor set $$X$$ of Assouad dimension strictly smaller than one. These maps are constructed by considering a collection of Dehn twists on the Riemann surface $$\S^2 \setminus X$$. The decomposition is then obtained via a bi-Lipschitz path which simultaneously unwinds these Dehn twists. As part of our construction, we also show that $$X \subset \S^2$$ is uniformly disconnected if and only if the Riemann surface $$\S^2 \setminus X$$ has a pants decomposition whose cuffs have hyperbolic length uniformly bounded above, which may be of independent interest. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2154918
- PAR ID:
- 10533587
- Publisher / Repository:
- SpringerLink
- Date Published:
- Journal Name:
- Journal d'Analyse Mathématique
- Volume:
- 152
- Issue:
- 2
- ISSN:
- 0021-7670
- Page Range / eLocation ID:
- 421 to 469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We introduce and study the notion of *an outer bi-Lipschitz extension* of a map between Euclidean spaces. The notion is a natural analogue of the notion of *a Lipschitz extension* of a Lipschitz map. We show that for every map f there exists an outer bi-Lipschitz extension f′ whose distortion is greater than that of f by at most a constant factor. This result can be seen as a counterpart of the classic Kirszbraun theorem for outer bi-Lipschitz extensions. We also study outer bi-Lipschitz extensions of near-isometric maps and show upper and lower bounds for them. Then, we present applications of our results to prioritized and terminal dimension reduction problems, described next. We prove a *prioritized* variant of the Johnson–Lindenstrauss lemma: given a set of points X⊂ ℝd of size N and a permutation (”priority ranking”) of X, there exists an embedding f of X into ℝO(logN) with distortion O(loglogN) such that the point of rank j has only O(log3 + ε j) non-zero coordinates – more specifically, all but the first O(log3+ε j) coordinates are equal to 0; the distortion of f restricted to the first j points (according to the ranking) is at most O(loglogj). The result makes a progress towards answering an open question by Elkin, Filtser, and Neiman about prioritized dimension reductions. We prove that given a set X of N points in ℜd, there exists a *terminal* dimension reduction embedding of ℝd into ℝd′, where d′ = O(logN/ε4), which preserves distances ||x−y|| between points x∈ X and y ∈ ℝd, up to a multiplicative factor of 1 ± ε. This improves a recent result by Elkin, Filtser, and Neiman. The dimension reductions that we obtain are nonlinear, and this nonlinearity is necessary.more » « less
- 
            Let \(\Sigma\) be a closed subset of \(\mathbb{R}^{n+1}\) which is parabolic Ahlfors-David regular and assume that \(\Sigma\) satisfies a 2-sided corkscrew condition. Assume, in addition, that \(\Sigma\) is either time-forwards Ahlfors-David regular, time-backwards Ahlfors-David regular, or parabolic uniform rectifiable. We then first prove that \(\Sigma\) satisfies a weak synchronized two cube condition. Based on this we are able to revisit the argument of Nyström and Strömqvist (2009) and prove that \(\Sigma\) contain suniform big pieces of Lip(1,1/2) graphs. When \(\Sigma\) is parabolic uniformly rectifiable the construction can be refined and in this case we prove that \(\Sigma\) contains uniform big pieces of regular parabolic Lip(1,1/2) graphs. Similar results hold if \(\Omega\subset\mathbb{R}^{n+1}\) is a connected component of \(\mathbb{R}^{n+1}\setminus\Sigma\) and in this context we also give a parabolic counterpart of the main result of Azzam et al. (2017) by proving that if \(\Omega\) is a one-sided parabolic chord arc domain, and if \(\Sigma\) is parabolic uniformly rectifiable, then \(\Omega\) is in fact a parabolic chord arc domain. Our results give a flexible parabolic version of the classical (elliptic) result of David and Jerison (1990) concerning the existence of uniform big pieces of Lipschitz graphs for sets satisfying a two disc condition.more » « less
- 
            Let $$X=\mathbb{C}\times\Sigma$$ be the product of the complex plane and a compact Riemann surface. We establish a classification theorem of solutions to the Seiberg-Witten equation on $$X$$ with finite analytic energy. The spin bundle $$S^+\to X$$ splits as $$L^+\oplus L^-$$. When $$2-2g\leq c_1(S^+)[\Sigma]<0$$, the moduli space is in bijection with the moduli space of pairs $$((L^+,\bar{\partial}), f)$$ where $$(L^+,\bar{\partial})$$ is a holomorphic structure on $L^+$ and $$f: \mathbb{C}\to H^0(\Sigma, L^+,\bar{\partial})$$ is a polynomial map. Moreover, the solution has analytic energy $$-4\pi^2d\cdot c_1(S^+)[\Sigma]$$ if $$f$$ has degree $$d$$. When $$c_1(S^+)=0$$, all solutions are reducible and the moduli space is the space of flat connections on $$\bigwedge^2 S^+$$. We also estimate the decay rate at infinity for these solutions.more » « less
- 
            We study theories of type D4 in class-S, with nonabelian outer-automorphism twists around various cycles of the punctured Riemann surface C. We propose an extension of previous formulæ for the superconformal index to cover this case and classify the SCFTs corresponding to fixtures (3-punctured spheres). We then go on to study families of SCFTs corresponding to once-punctured tori and 4-punctured spheres. These exhibit new behaviours, not seen in previous investigations. In particular, the generic theory with 4 punctures on the sphere from non-commuting Z2 twisted sectors has six distinct weakly-coupled descriptions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    