skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature, resources and predation interact to shape phytoplankton size–abundance relationships at a continental scale
Abstract AimCommunities contain more individuals of small species and fewer individuals of large species. According to the ‘metabolic theory of ecology’, the relationship of log mean abundance with log mean body size across communities should exhibit a slope of −3/4 that is invariant across environmental conditions. Here, we investigate whether this slope is indeed invariant or changes systematically across gradients in temperature, resource availability and predation pressure. Location1048 lakes across the USA. Time Period2012. Major Taxa StudiedPhytoplankton. ResultsWe found that the size–abundance relationship across all sampled phytoplankton communities was significantly lower than −3/4 and near −1 overall. More importantly, we found strong evidence that the environment affects the slope: it varies between −0.33 and −0.93 across interacting gradients of temperature, resource (phosphorus) supply and zooplankton predation pressure. Therefore, phytoplankton communities have orders of magnitude more small or large cells depending on environmental conditions across geographical locations. ConclusionOur results emphasise the importance of the environmental factors' effect on macroecological patterns that arise through physiological and ecological processes. An investigation of the mechanisms underlying the link between individual energetics constrain and macroecological patterns would allow to predict how global warming and changes in nutrients will alter large‐scale ecological patterns in the future.  more » « less
Award ID(s):
2106067
PAR ID:
10533637
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
32
Issue:
11
ISSN:
1466-822X
Page Range / eLocation ID:
2006 to 2016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Parameters describing the negative relationship between abundance and body size within ecological communities provide a summary of many important biological processes. While it is considered to be one of the few consistent patterns in ecology, spatiotemporal variation of this relationship across continental scale temperature gradients is unknown. Using a database of stream communities collected across North America (18–68°N latitude, −4 to 25°C mean annual air temperature) over 3 years, we constructed 160 individual size distribution (ISD) relationships (i.e. abundance size spectra). The exponent parameter describing ISD’s decreased (became steeper) with increasing mean annual temperature, with median slopes varying by ~0.2 units across the 29°C temperature gradient. In addition, total community biomass increased with increasing temperatures, contrary with theoretical predictions. Our study suggests conservation of ISD relationships in streams across broad natural environmental gradients. This supports the emerging use of size‐spectra deviations as indicators of fundamental changes to the structure and function of ecological communities. 
    more » « less
  2. Abstract AimThe assembly of species into communities and ecoregions is the result of interacting factors that affect plant and animal distribution and abundance at biogeographic scales. Here, we empirically derive ecoregions for mammals to test whether human disturbance has become more important than climate and habitat resources in structuring communities. LocationConterminous United States. Time Period2010–2021. Major Taxa StudiedTwenty‐five species of mammals. MethodsWe analysed data from 25 mammal species recorded by camera traps at 6645 locations across the conterminous United States in a joint modelling framework to estimate relative abundance of each species. We then used a clustering analysis to describe 8 broad and 16 narrow mammal communities. ResultsClimate was the most important predictor of mammal abundance overall, while human population density and agriculture were less important, with mixed effects across species. Seed production by forests also predicted mammal abundance, especially hard‐mast tree species. The mammal community maps are similar to those of plants, with an east–west split driven by different dominant species of deer and squirrels. Communities vary along gradients of temperature in the east and precipitation in the west. Most fine‐scale mammal community boundaries aligned with established plant ecoregions and were distinguished by the presence of regional specialists or shifts in relative abundance of widespread species. Maps of potential ecosystem services provided by these communities suggest high herbivory in the Rocky Mountains and eastern forests, high invertebrate predation in the subtropical south and greater predation pressure on large vertebrates in the west. Main ConclusionsOur results highlight the importance of climate to modern mammals and suggest that climate change will have strong impacts on these communities. Our new empirical approach to recognizing ecoregions has potential to be applied to expanded communities of mammals or other taxa. 
    more » « less
  3. Abstract Accumulating evidence suggests that ecological communities undergoing change in response to either anthropogenic or natural disturbances exhibit macroecological patterns that differ from those observed in similar types of communities in relatively undisturbed sites. In contrast to such cross‐site comparisons, however, there are few empirical studies of shifts over time in the shapes of macroecological patterns. Here, we provide a dramatic example of a plant community in which the species–area relationship and the species‐abundance distribution change markedly over a period of six years. These patterns increasingly deviate from the predictions of the maximum entropy theory of ecology (METE), which successfully predicts macroecological patterns in relatively static systems. The error in the species–area relationship prediction additionally correlates over time with increased stress measured as mortality minus recruitment, providing a link between demography and the failure of macroecological theory. Information on the dynamic state of an ecosystem inferred from snapshot measurements of macroecological community structure can potentially assist in identifying causes and consequences of disturbance and extending the domain of current theories and models to disturbed ecosystems. 
    more » « less
  4. Bernstein, Hans C (Ed.)
    ABSTRACT The continental shelf of the Western Antarctic Peninsula (WAP) is a highly variable system characterized by strong cross-shelf gradients, rapid regional change, and large blooms of phytoplankton, notably diatoms. Rapid environmental changes coincide with shifts in plankton community composition and productivity, food web dynamics, and biogeochemistry. Despite the progress in identifying important environmental factors influencing plankton community composition in the WAP, the molecular basis for their survival in this oceanic region, as well as variations in species abundance, metabolism, and distribution, remains largely unresolved. Across a gradient of physicochemical parameters, we analyzed the metabolic profiles of phytoplankton as assessed through metatranscriptomic sequencing. Distinct phytoplankton communities and metabolisms closely mirrored the strong gradients in oceanographic parameters that existed from coastal to offshore regions. Diatoms were abundant in coastal, southern regions, where colder and fresher waters were conducive to a bloom of the centric diatom,Actinocyclus. Members of this genus invested heavily in growth and energy production; carbohydrate, amino acid, and nucleotide biosynthesis pathways; and coping with oxidative stress, resulting in uniquely expressed metabolic profiles compared to other diatoms. We observed strong molecular evidence for iron limitation in shelf and slope regions of the WAP, where diatoms in these regions employed iron-starvation induced proteins, a geranylgeranyl reductase, aquaporins, and urease, among other strategies, while limiting the use of iron-containing proteins. The metatranscriptomic survey performed here reveals functional differences in diatom communities and provides further insight into the environmental factors influencing the growth of diatoms and their predicted response to changes in ocean conditions. IMPORTANCEIn the Southern Ocean, phytoplankton must cope with harsh environmental conditions such as low light and growth-limiting concentrations of the micronutrient iron. Using metratranscriptomics, we assessed the influence of oceanographic variables on the diversity of the phytoplankton community composition and on the metabolic strategies of diatoms along the Western Antarctic Peninsula, a region undergoing rapid climate change. We found that cross-shelf differences in oceanographic parameters such as temperature and variable nutrient concentrations account for most of the differences in phytoplankton community composition and metabolism. We opportunistically characterized the metabolic underpinnings of a large bloom of the centric diatomActinocyclusin coastal waters of the WAP. Our results indicate that physicochemical differences from onshore to offshore are stronger than between southern and northern regions of the WAP; however, these trends could change in the future, resulting in poleward shifts in functional differences in diatom communities and phytoplankton blooms. 
    more » « less
  5. null (Ed.)
    Macroecological rules have been developed for plants and animals that describe large-scale distributional patterns and attempt to explain the underlying physiological and ecological processes behind them. Similarly, microorganisms exhibit patterns in relative abundance, distribution, diversity, and traits across space and time, yet it remains unclear the extent to which microorganisms follow macroecological rules initially developed for macroorganisms. Additionally, the usefulness of these rules as a null hypothesis when surveying microorganisms has yet to be fully evaluated. With rapid advancements in sequencing technology, we have seen a recent increase in microbial studies that utilize macroecological frameworks. Here, we review and synthesize these macroecological microbial studies with two main objectives: (1) to determine to what extent macroecological rules explain the distribution of host-associated and free-living microorganisms, and (2) to understand which environmental factors and stochastic processes may explain these patterns among microbial clades (archaea, bacteria, fungi, and protists) and habitats (host-associated and free living; terrestrial and aquatic). Overall, 78% of microbial macroecology studies focused on free living, aquatic organisms. In addition, most studies examined macroecological rules at the community level with only 35% of studies surveying organismal patterns across space. At the community level microorganisms often tracked patterns of macroorganisms for island biogeography (74% confirm) but rarely followed Latitudinal Diversity Gradients (LDGs) of macroorganisms (only 32% confirm). However, when microorganisms and macroorganisms shared the same macroecological patterns, underlying environmental drivers (e.g., temperature) were the same. Because we found a lack of studies for many microbial groups and habitats, we conclude our review by outlining several outstanding questions and creating recommendations for future studies in microbial ecology. 
    more » « less