skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate, food and humans predict communities of mammals in the United States
Abstract AimThe assembly of species into communities and ecoregions is the result of interacting factors that affect plant and animal distribution and abundance at biogeographic scales. Here, we empirically derive ecoregions for mammals to test whether human disturbance has become more important than climate and habitat resources in structuring communities. LocationConterminous United States. Time Period2010–2021. Major Taxa StudiedTwenty‐five species of mammals. MethodsWe analysed data from 25 mammal species recorded by camera traps at 6645 locations across the conterminous United States in a joint modelling framework to estimate relative abundance of each species. We then used a clustering analysis to describe 8 broad and 16 narrow mammal communities. ResultsClimate was the most important predictor of mammal abundance overall, while human population density and agriculture were less important, with mixed effects across species. Seed production by forests also predicted mammal abundance, especially hard‐mast tree species. The mammal community maps are similar to those of plants, with an east–west split driven by different dominant species of deer and squirrels. Communities vary along gradients of temperature in the east and precipitation in the west. Most fine‐scale mammal community boundaries aligned with established plant ecoregions and were distinguished by the presence of regional specialists or shifts in relative abundance of widespread species. Maps of potential ecosystem services provided by these communities suggest high herbivory in the Rocky Mountains and eastern forests, high invertebrate predation in the subtropical south and greater predation pressure on large vertebrates in the west. Main ConclusionsOur results highlight the importance of climate to modern mammals and suggest that climate change will have strong impacts on these communities. Our new empirical approach to recognizing ecoregions has potential to be applied to expanded communities of mammals or other taxa.  more » « less
Award ID(s):
2211764 2206783 2022036 2211767 2211768
PAR ID:
10527636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Diversity and Distributions
ISSN:
1366-9516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT AimNon‐native plants have the potential to harm ecosystems. Harm is classically related to their distribution and abundance, but this geographical information is often unknown. Here, we assess geographical commonness as a potential indicator of invasive status for non‐native flora in the United States. Geographical commonness could inform invasion risk assessments across species and ecoregions. LocationConterminous United States. Time PeriodThrough 2022. Major Taxa StudiedPlants. MethodsWe compiled and standardised occurrence and abundance data from 14 spatial datasets and used this information to categorise non‐native species as uncommon or common based on three dimensions of commonness: area of occupancy, habitat breadth and local abundance. To assess consistency in existing categorizations, we compared commonness to invasive status in the United States. We identified species with higher‐than‐expected abundance relative to their occupancy, habitat breadth or residence time. We calculated non‐native plant richness within United States ecoregions and estimated unreported species based on rarefaction/extrapolation curves. ResultsThis comprehensive database identified 1874 non‐native plant species recorded in 4,844,963 locations. Of these, 1221 species were locally abundant (> 10% cover) in 797,759 unique locations. One thousand one hundred one non‐native species (59%) achieved at least one dimension of commonness, including 565 species that achieved all three. Species with longer residence times tended to meet more dimensions of commonness. We identified 132 species with higher‐than‐expected abundance. Ecoregions in the central United States have the largest estimated numbers of unreported, abundant non‐native plants. Main ConclusionsA high proportion of non‐native species have become common in the United States. However, existing categorizations of invasive species are not always consistent with species' abundance and distribution, even after considering residence time. Considering geographical commonness and higher‐than‐expected abundance revealed in this new dataset could support more consistent and proactive identification of invasive plants and lead to more efficient management practices. 
    more » « less
  2. ABSTRACT MotivationSNAPSHOT USA is an annual, multicontributor camera trap survey of mammals across the United States. The growing SNAPSHOT USA dataset is intended for tracking the spatial and temporal responses of mammal populations to changes in land use, land cover and climate. These data will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, as well as the impacts of species interactions on daily activity patterns. Main Types of Variables ContainedSNAPSHOT USA 2019–2023 contains 987,979 records of camera trap image sequence data and 9694 records of camera trap deployment metadata. Spatial Location and GrainData were collected across the United States of America in all 50 states, 12 ecoregions and many ecosystems. Time Period and GrainData were collected between 1st August and 29th December each year from 2019 to 2023. Major Taxa and Level of MeasurementThe dataset includes a wide range of taxa but is primarily focused on medium to large mammals. Software FormatSNAPSHOT USA 2019–2023 comprises two .csv files. The original data can be found within the SNAPSHOT USA Initiative in the Wildlife Insights platform. 
    more » « less
  3. ABSTRACT AimThe species that compose local communities possess unique sets of functional and ecological traits that can be used as indicators of biotic and abiotic variation across space and time. Body size is a particularly relevant trait because species with different body sizes typically have different life history strategies and occupy distinct niches. Here we used the body sizes of non‐volant (i.e., non‐flying) terrestrial mammals to quantify and compare the body size disparity of mammal communities across the globe. LocationGlobal. Time PeriodPresent. Major Taxa StudiedNon‐volant terrestrial mammals. MethodsWe used IUCN range maps of 3982 terrestrial mammals to identify 1876 communities. We then combined diet data with data on climate, elevation and anthropogenic pressures to evaluate these variables' relative importance on the observed body size dispersion of these communities and its deviation from a null model. ResultsDispersion for these communities is significantly greater than expected in 54% of communities and significantly less than expected in 30% of communities. The number of very large species, continent, range sizes, diet disparity and annual temperature collectively explain > 50% of the variation in observed dispersion, whereas continent, the number of very large species, and precipitation collectively explain > 30% of the deviation from the null model. Main ConclusionsClimate and elevation have minimal predictive power, suggesting that biotic factors may be more important for explaining community body size distributions. However, continent is consistently a strong predictor of dispersion, likely due to it capturing the combined effects of climate, size‐selective human‐induced extinctions and more. Overall, our results are consistent with several plausible explanations, including, but not limited to, competitive exclusion, unequal distribution of resources, within‐community environmental heterogeneity, habitat filtering and ecosystem engineering. Further work focusing on other confounding variables, at finer spatial scales and/or within more causal frameworks is required to better understand the driver(s) of these patterns. 
    more » « less
  4. Abstract AimTropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure. LocationTropical rainforests worldwide. Time periodPresent. Major taxa studiedGround‐dwelling and ground‐visiting mammals and birds. MethodsWe used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure. ResultsPhylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies. Main conclusionsOur results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change. 
    more » « less
  5. Summary Are non‐native plants abundant because they are non‐native, and have advantages over native plants, or because they possess ‘fast’ resource strategies, and have advantages in disturbed environments? This question is central to invasion biology but remains unanswered.We quantified the relative importance of resource strategy and biogeographic origin in 69 441 plots across the conterminous United States containing 11 280 plant species.Non‐native species had faster economic traits than native species in most plant communities (77%, 86% and 82% of plots for leaf nitrogen concentration, specific leaf area, and leaf dry matter content). Non‐native species also had distinct patterns of abundance, but these were not explained by their fast traits. Compared with functionally similar native species, non‐native species were (1) more abundant in plains and deserts, indicating the importance of biogeographic origin, and less abundant in forested ecoregions, (2) were more abundant where co‐occurring species had fast traits, for example due to disturbance, and (3) showed weaker signals of local environmental filtering.These results clarify the nature of plant invasion: Although non‐native plants have consistently fast economic traits, other novel characteristics and processes likely explain their abundance and, therefore, impacts. 
    more » « less