skip to main content


This content will become publicly available on June 27, 2025

Title: Climate, food and humans predict communities of mammals in the United States
Abstract Aim

The assembly of species into communities and ecoregions is the result of interacting factors that affect plant and animal distribution and abundance at biogeographic scales. Here, we empirically derive ecoregions for mammals to test whether human disturbance has become more important than climate and habitat resources in structuring communities.

Location

Conterminous United States.

Time Period

2010–2021.

Major Taxa Studied

Twenty‐five species of mammals.

Methods

We analysed data from 25 mammal species recorded by camera traps at 6645 locations across the conterminous United States in a joint modelling framework to estimate relative abundance of each species. We then used a clustering analysis to describe 8 broad and 16 narrow mammal communities.

Results

Climate was the most important predictor of mammal abundance overall, while human population density and agriculture were less important, with mixed effects across species. Seed production by forests also predicted mammal abundance, especially hard‐mast tree species. The mammal community maps are similar to those of plants, with an east–west split driven by different dominant species of deer and squirrels. Communities vary along gradients of temperature in the east and precipitation in the west. Most fine‐scale mammal community boundaries aligned with established plant ecoregions and were distinguished by the presence of regional specialists or shifts in relative abundance of widespread species. Maps of potential ecosystem services provided by these communities suggest high herbivory in the Rocky Mountains and eastern forests, high invertebrate predation in the subtropical south and greater predation pressure on large vertebrates in the west.

Main Conclusions

Our results highlight the importance of climate to modern mammals and suggest that climate change will have strong impacts on these communities. Our new empirical approach to recognizing ecoregions has potential to be applied to expanded communities of mammals or other taxa.

 
more » « less
Award ID(s):
2211764 2206783 2022036 2211767
NSF-PAR ID:
10527636
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Diversity and Distributions
ISSN:
1366-9516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Biomes, biogeographical realms and ecoregions have become central concepts of biotic organization and biodiversity research. Recent data‐intensive analysis has shown that, while ecoregions do delineate biotic communities, how distinct they are from one another varies considerably across regions and taxa. Given their central importance to global models of the earth system and to the development of conservation plans, it is key to understand in what regions, and for which taxa, ecoregion classification schemes best describe the underlying variability in biological communities.

    Location

    Global.

    Taxa

    Plants, animals, fungi.

    Methods

    In this paper, we integrate ecoregion maps with data on spatially continuous changes in environmental conditions, biodiversity and species traits to quantify the descriptive power of ecoregions around the globe. Capitalizing on the troves of newly available global biodiversity data, we model the abiotic and biotic factors that describe how distinct ecoregions are from one another.

    Results

    From an abiotic perspective, we report compelling evidence that, first, ecoregions are more distinct in tropical zones with higher temperatures, less temperature seasonality and greater rainfall seasonality. Second, we also find that ecoregions are more distinct in regions with steeper slopes. From a biotic perspective, we find that ecoregions tend to be more distinct for reptiles and amphibians than they are for mammals or birds. Likewise, ecoregions tend to be more distinct for smaller‐bodied species and, to a lesser extent, species at lower trophic levels.

    Main conclusions

    While ecoregion‐based conservation planning can provide a crucial tool for developing holistic conservation interventions, we show here that the ability to capture and describe communities is not uniform across regions or taxa. In particular, ecoregions tend to best describe communities of small‐bodied species, less vagile and tropical taxa that are typically underrepresented in the scientific literature. While ecoregion classification schemes will continue to provide invaluable conservation guidance, we must think critically about when an ecoregional approach is best suited to informing management.

     
    more » « less
  2. Abstract Aim

    Small, old‐growth forest fragments generally have more small‐seeded plants than large patches, due to the disappearance of large seed dispersing vertebrates. This pattern may differ for secondary forest fragments where differential migration ability rather than persistence of seed dispersers may be driving plant community assembly. In this study, we investigated the effect of habitat fragmentation on seed dispersers and plant community structure in regenerating forests.

    Location

    The Thousand Island Lake, China.

    Taxon

    Plants, birds and mammals.

    Methods

    We compiled diversity and abundance data for birds and mammals on islands in the Thousand Island Lake, China. We also surveyed the secondary plant communities and measured seed dispersal traits.

    Results

    Community‐weighted mean seed size of woody plants decreased with island size. This pattern was related to compositional difference of the dispersers. We found that mammal diversity and abundance was only weakly or not related to island size; whereas bird diversity and abundance increased strongly with island size. Density of bird‐dispersed plants was significantly positively related with island size. Since birds tend to disperse smaller seeds than mammals, the trend in seed size may have been a consequence of the shift in relative abundance of the two disperser guilds.

    Main Conclusions

    Differential responses of seed dispersers to habitat fragmentation may lead to pervasive shifts in the plant community structure of regenerating forest fragments. Our study highlights the importance of keeping large continuous forests in order to retain mammals and their dispersal capabilities.

     
    more » « less
  3. Abstract

    Large terrestrial herbivorous mammals (LTH‐mammals) influence plant community structure by affecting seedling establishment in mature tropical forests. Many of these LTH‐mammals frequent secondary forests, but their effects on seedling establishment in them are understudied, hindering our understanding of how LTH‐mammals influence forest regeneration in human‐modified landscapes.

    We tested the hypothesis that the strength of LTH‐mammals' effects on seedling establishment depends on landscape protection, forest successional stage and plant species' traits using a manipulative field experiment in six 1‐ha sites with varying successional age and landscape protection. In each site, we established 40 seedling plot‐pairs, with one plot excluding LTH‐mammals and one not, and monitored seedlings of 116 woody species for 26 months.

    We found significant effects of LTH‐mammal exclusion on seedling survival contingent upon the protection of forests at the landscape level and forest stage. After 26 months, survival differences between LTH‐mammal exclusion and non‐exclusion treatments were greater in protected than unprotected landscapes. Additionally, plant species' traits were related to the LTH‐mammals' differential effects, as LTH‐mammals reduced the survival of seedlings of larger‐seeded species the most. Overall, LTH‐mammals' effects translated into significant shifts in community composition as seedling communities inside and outside the exclosures diverged. Moreover, lower density and higher species diversity were found as early as 12 and 18 months outside than inside exclosures.

    Synthesis and applications.Insight into the interactions between LTH‐mammals and seedling communities in forest regeneration can be instrumental in planning effective restoration efforts. We highlight the importance of landscape protection in seedling survival and the role of LTH‐mammals in promoting seedling diversity in mature forests but also in secondary successional forests. The findings suggest that conservation efforts and possibly trophic rewilding can be important approaches for preserving diversity and influencing the trajectory of secondary tropical forest succession. However, we also caution that an overabundance of LTH‐mammals may adversely impact the pace of forest succession due to their preference for large‐seeded species. Therefore, a comprehensive wildlife management plan is indispensable. Additionally, longer term studies on LTH‐mammals are necessary to understand the effects of temporal fluctuations that are undetected in short‐term studies.

     
    more » « less
  4. Abstract Aim

    Tropical regions harbour over half of the world's mammals and birds, but how their communities have assembled over evolutionary timescales remains unclear. To compare eco‐evolutionary assembly processes between tropical mammals and birds, we tested how hypotheses concerning niche conservatism, environmental stability, environmental heterogeneity and time‐for‐speciation relate to tropical vertebrate community phylogenetic and functional structure.

    Location

    Tropical rainforests worldwide.

    Time period

    Present.

    Major taxa studied

    Ground‐dwelling and ground‐visiting mammals and birds.

    Methods

    We used in situ observations of species identified from systematic camera trap sampling as realized communities from 15 protected tropical rainforests in four tropical regions worldwide. We quantified standardized phylogenetic and functional structure for each community and estimated the multi‐trait phylogenetic signal (PS) in ecological strategies for the four regional species pools of mammals and birds. Using linear regression models, we test three non‐mutually exclusive hypotheses by comparing the relative importance of colonization time, palaeo‐environmental changes in temperature and land cover since 3.3 Mya, contemporary seasonality in temperature and productivity and environmental heterogeneity for predicting community phylogenetic and functional structure.

    Results

    Phylogenetic and functional structure showed non‐significant yet varying tendencies towards clustering or dispersion in all communities. Mammals had stronger multi‐trait PS in ecological strategies than birds (mean PS: mammal = 0.62, bird = 0.43). Distinct dominant processes were identified for mammal and bird communities. For mammals, colonization time and elevation range significantly predicted phylogenetic clustering and functional dispersion tendencies respectively. For birds, elevation range and contemporary temperature seasonality significantly predicted phylogenetic and functional clustering tendencies, respectively, while habitat diversity significantly predicted functional dispersion tendencies.

    Main conclusions

    Our results reveal different eco‐evolutionary assembly processes structuring contemporary tropical mammal and bird communities over evolutionary timescales that have shaped tropical diversity. Our study identified marked differences among taxonomic groups in the relative importance of historical colonization and sensitivity to environmental change.

     
    more » « less
  5. Abstract Aim

    Biodiversity on Earth is threatened by climate change. Despite the vulnerability of freshwater habitats to human impacts, most climate change projections have focused on terrestrial systems. Here, we examined how the current distributions and biodiversity of stream taxa might change under mitigated, stabilizing and increasing greenhouse gas emissions.

    Location

    Conterminous USA.

    Time period

    Present day to 2070.

    Major taxa studied

    Stream diatoms, insects and fish.

    Methods

    We developed species distribution models for 336 freshwater taxa from 1,227 distinct stream localities using water chemistry, watershed and climatic variables. Models based only on climate were used to project changes in the distributions and biodiversity of cold‐ versus warm‐water taxa under representative concentration pathways (RCPs) ranging from 2.6 to 8.5 W/m2.

    Results

    In all three organismal groups, climate emerged as the strongest predictor of species distributions, providing comparable explanatory power to water chemistry and watershed variables combined. The RCP‐based projections suggested a widespread expansion of warm‐water taxa, outpacing the decline of cold‐water taxa. Consequently, overall species richness would increase, but beta diversity would decrease drastically with the severity of climate change. A closer look at individual taxa and functional guilds revealed that vulnerable cold‐water taxa included: (a) diatom guilds forming the base and bulk of the biofilm; (b) environmentally sensitive insects, characteristic of unimpacted streams; and (c) ecologically and recreationally important salmonids, which were forecast to diminish dramatically in source habitats. Warm‐water fish projected to increase their distributions include bait bucket release minnows and dominant predators.

    Main conclusions

    Our results suggest potentially devastating impacts of climate change on stream ecosystems, with the restructuring of diatom, insect and fish communities, diminished distributions of functionally important taxa and widespread expansion of warm‐water taxa, giving rise to biotic homogenization. Given that the magnitude of these biotic shifts depends on the severity of climate change, appropriate current policy decisions are necessary to preserve freshwater ecosystems.

     
    more » « less