Field-programmable gate arrays (FPGAs) have largely been used in communication and high-performance computing and given the recent advances in big data and emerging trends in cloud computing (e.g., serverless [18]), FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s datacenters [6] and Amazon Web Services [10]). To address these domains’ processing needs, recent research has focused on using FPGAs to accelerate workloads, ranging from analytics and machine learning to databases and network function virtualization. In this paper, we present an ongoing effort to realize a high-performance FPGA-as-a-microservice (FaaM) architecture for the cloud. We discuss some of the technical challenges and propose several solutions for efficiently integrating FPGAs into virtualized environments. Our case study deploying a multithreaded, multi-user compression as a microservice using the FaaM architecture indicate that microservices-based FPGA acceleration can sustain high-performance compared to straightforward implementation with minimal to no communication overhead despite the hardware abstraction.
more »
« less
Compiler-Driven FPGA Virtualization with SYNERGY
FPGAs are increasingly common in modern applications, and cloud providers now support on-demand FPGA acceleration in datacenters. Applications in datacenters run on virtual infrastructure, where consolidation, multi-tenancy, and workload migration enable economies of scale that are fundamental to the provider's business. However, a general strategy for virtualizing FPGAs has yet to emerge. While manufacturers struggle with hardware-based approaches, we propose a compiler/runtime-based solution called Synergy. We show a compiler transformation for Verilog programs that produces code able to yield control to software atsub-clock-tickgranularity according to the semantics of the original program. Synergy uses this property to efficiently support core virtualization primitives: suspend and resume, program migration, and spatial/temporal multiplexing, on hardware which is availabletoday.We use Synergy to virtualize FPGA workloads across a cluster of Intel SoCs and Xilinx FPGAs on Amazon F1. The workloads require no modification, run within 3--4x of unvirtualized performance, and incur a modest increase in FPGA fabric usage.
more »
« less
- Award ID(s):
- 1846169
- PAR ID:
- 10533673
- Publisher / Repository:
- Communications of the ACM
- Date Published:
- Journal Name:
- Communications of the ACM
- Volume:
- 67
- Issue:
- 8
- ISSN:
- 0001-0782
- Page Range / eLocation ID:
- 134 to 142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Field-programmable gate arrays (FPGAs) have largely been used in communication and high-performance computing, and given the recent advances in big data, machine learning and emerging trends in cloud computing (e.g., serverless [1]), FPGAs are increasingly being introduced into these domains (e.g., Microsoft’s datacenters [2] and Amazon Web Services [3]). To address these domains’ processing needs, recent research has focused on using FPGAs to accelerate workloads, ranging from analytics and machine learning to databases and network function virtualization. In this paper, we present a high-performance FPGA-as-a-microservice (FaaM) architecture for the cloud. We discuss some of the technical challenges and propose several solutions for efficiently integrating FPGAs into virtualized environments. Our case study deploying a multi-threaded, multi-user compression as a microservice using FaaM indicates that microservices-based FPGA acceleration can sustain high-performance as compared to a straightforward CPU implementation with minimal to no communication overhead despite the hardware abstraction.more » « less
-
Cloud providers such as Amazon and Microsoft have begun to support on-demand FPGA acceleration in the cloud, and hardware vendors will support FPGAs in future processors. At the same time, technology advancements such as 3D stacking, through-silicon vias (TSVs), and FinFETs have greatly increased FPGA density. The massive parallelism of current FPGAs can support not only extremely large applications, but multiple applications simultaneously as well. System support for FPGAs, however, is in its infancy. Unlike software, where resource configurations are limited to simple dimensions of compute, memory, and I/O, FPGAs provide a multi-dimensional sea of resources known as the FPGA fabric: logic cells, floating point units, memories, and I/O can all be wired together, leading to spatial constraints on FPGA resources. Current stacks either support only a single application or statically partition the FPGA fabric into fixed-size slots. These designs cannot efficiently support diverse workloads: the size of the largest slot places an artificial limit on application size, and oversized slots result in wasted FPGA resources and reduced concurrency. This paper presents AMORPHOS, which encapsulates user FPGA logic in morphable tasks, or Morphlets. Morphlets provide isolation and protection across mutually distrustful protection domains, extending the guarantees of software processes. Morphlets can morph, dynamically altering their deployed form based on resource requirements and availability. To build Morphlets, developers provide a parameterized hardware design that interfaces with AMORPHOS, along with a mesh, which specifies external resource requirements. AMORPHOS explores the parameter space, generating deployable Morphlets of varying size and resource requirements. AMORPHOS multiplexes Morphlets on the FPGA in both space and time to maximize FPGA utilization. We implement AMORPHOS on Amazon F1 [1] and Microsoft Catapult [92]. We show that protected sharing and dynamic scalability support on workloads such as DNN inference and blockchain mining improves aggregate throughput up to 4× and 23× on Catapult and F1 respectively.more » « less
-
Multi-Party Computation (MPC) is a technique enabling data from several sources to be used in a secure computation revealing only the result while protecting the original data, facilitating shared utilization of data sets gathered by different entities. The presence of Field Programmable Gate Array (FPGA) hardware in datacenters can provide accelerated computing as well as low latency, high bandwidth communication that bolsters the performance of MPC and lowers the barrier to using MPC for many applications. In this work, we propose a Secret Sharing FPGA design based on the protocol described by Araki et al. We compare our hardware design to the original authors' software implementations of Secret Sharing and to work accelerating MPC protocols based on Garbled Circuits with FPGAs. Our conclusion is that Secret Sharing in the datacenter is competitive and when implemented on FPGA hardware was able to use at least 10x fewer computer resources than the original work using CPUs.more » « less
-
null (Ed.)While FPGAs have been traditionally considered hard to program, recently there have been efforts aimed to allow the use of high-level programming models and libraries intended for multi-core CPUs and GPUs to program FPGAs. For example, both Intel and Xilinx are now providing toolchains to deploy OpenCL code onto FPGA. However, because the nature of the parallelism offered by GPU and FPGA devices is fundamentally different, OpenCL code optimized for GPU can prove very inefficient on FPGA, in terms of both performance and hardware resource utilization. This paper explores this problem on finite automata traversal. In particular, we consider an OpenCL NFA traversal kernel optimized for GPU but exhibiting FPGA-friendly characteristics, namely: limited memory requirements, lack of synchronization, and SIMD execution. We explore a set of structural code changes, custom and best-practice optimizations to retarget this code to FPGA. We showcase the effect of these optimizations on an Intel Stratix V FPGA board using various NFA topologies from different application domains. Our evaluation shows that, while the resource requirements of the original code exceed the capacity of the FPGA in use, our optimizations lead to significant resource savings and allow the transformed code to fit the FPGA for all considered NFA topologies. In addition, our optimizations lead to speedups up to 4x over an already optimized code-variant aimed to fit the NFA traversal kernel on FPGA. Some of the proposed optimizations can be generalized for other applications and introduced in OpenCL-to-FPGA compiler.more » « less
An official website of the United States government

