skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local carbon reserves are insufficient for phloem terpene induction during drought in Pinus edulis in response to bark beetle‐associated fungi
Summary Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack.We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in maturePinus edulisunder experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostomasp.) ofIps confusus, the main bark beetle colonizing this tree, to induce a defensive response.Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted forc.23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site.Our results show thatde novoterpene synthesis represents only a fraction of the total measured phloem terpenes inP. edulisfollowing fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance ofde novoterpene synthesis in a tree's induced defense response.  more » « less
Award ID(s):
1755362 1655499
PAR ID:
10533811
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
244
Issue:
2
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 654-669
Size(s):
p. 654-669
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense. 
    more » « less
  2. Summary Shifts in the age or turnover time of non‐structural carbohydrates (NSC) may underlie changes in tree growth under long‐term increases in drought stress associated with climate change. But NSC responses to drought are challenging to quantify, due in part to large NSC stores in trees and subsequently long response times of NSC to climate variation.We measured NSC age (Δ14C) along with a suite of ecophysiological metrics inPinus edulistrees experiencing either extreme short‐term drought (−90% ambient precipitation plot, 2020–2021) or a decade of severe drought (−45% plot, 2010–2021). We tested the hypothesis that carbon starvation – consumption exceeding synthesis and storage – increases the age of sapwood NSC.One year of extreme drought had no impact on NSC pool size or age, despite significant reductions in predawn water potential, photosynthetic rates/capacity, and twig and needle growth. By contrast, long‐term drought halved the age of the sapwood NSC pool, coupled with reductions in sapwood starch concentrations (−75%), basal area increment (−39%), and bole respiration rates (−28%).Our results suggest carbon starvation takes time, as tree carbon reserves appear resilient to extreme disturbance in the short term. However, after a decade of drought, trees apparently consumed old stored NSC to support metabolism. 
    more » « less
  3. Summary Carbon reserves are distributed throughout plant cells allowing past photosynthesis to fuel current metabolism. In trees, comparing the radiocarbon (Δ14C) of reserves to the atmospheric bomb spike can trace reserve ages.We synthesized Δ14C observations of stem reserves in nine tree species, fitting a new process model of reserve building. We asked how the distribution, mixing, and turnover of reserves vary across trees and species. We also explored how stress (drought and aridity) and disturbance (fire and bark beetles) perturb reserves.Given sufficient sapwood, young (< 1 yr) and old (20–60+ yr) reserves were simultaneously present in single trees, including ‘prebomb’ reserves in two conifers. The process model suggested that most reserves are deeply mixed (30.2 ± 21.7 rings) and then respired (2.7 ± 3.5‐yr turnover time). Disturbance strongly increased Δ14C mean ages of reserves (+15–35 yr), while drought and aridity effects on mixing and turnover were species‐dependent. Fire recovery inSequoia sempervirensalso appears to involve previously unobserved outward mixing of old reserves.Deep mixing and rapid turnover indicate most photosynthate is rapidly metabolized. Yet ecological variation in reserve ages is enormous, perhaps driven by stress and disturbance. Across species, maximum reserve ages appear primarily constrained by sapwood longevity, and thus old reserves are probably widespread. 
    more » « less
  4. Abstract Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed. 
    more » « less
  5. Abstract Warming temperatures and rising moisture deficits are expected to increase the rates of background tree mortality–low amounts of tree mortality (~0.5%–2% year−1), characterizing the forest demographic processes in the absence of abrupt, coarse‐scale disturbance events (e.g. fire). When compounded over multiple decades and large areas, even minor increases in background tree mortality (e.g. <0.5% year−1) can cause changes to forest communities and carbon storage potential that are comparable to or greater than those caused by disturbances.We examine how temporal variability in rates of background tree mortality for four subalpine conifers reflects variability in climate and climate teleconnections using observations of tree mortality from 1982 to 2019 at Niwot Ridge, Colorado, USA. Individually marked trees (initial population 5,043) in 13 permanent plots—located across a range of site conditions, stand ages and species compositions—were censused for new mortality nine times over 37 years.Background tree mortality was primarily attributed to stress from unfavourable climate and competition (71.2%) and bark beetle activity (23.3%), whereas few trees died from wind (5.3%) and wildlife impacts (0.2%). Mean annualized tree mortality attributed to tree stress and bark beetles more than tripled across all stands between initial censuses (0.26% year−1, 1982–1993/1994) and recent censuses (0.82% year−1, 2008–2019). Higher rates of tree mortality were related to warmer maximum summer temperatures, greater summer moisture deficits, and negative anomalies in ENSO (La Niña), with greater effects of drought in some subpopulations (tree size, age and species). For example, in older stands (>250 years), larger and older trees were more likely to die than smaller and younger trees. Differences in tree mortality rates and sensitivity to climate among subpopulations that varied by stand type may lead to unexpected shifts in stand composition and structure.Synthesis. A strong relationship between higher rates of tree mortality and warmer, drier summer climate conditions implies that climate warming will continue to increase background mortality rates in subalpine forests. Combined with increases in disturbances and declining frequency of moist‐cool years suitable for seedling establishment, increasing rates of tree mortality have the potential to drive declines in subalpine tree populations. 
    more » « less