This paper presents a recent investigation into the electromechanical behavior of thermally reduced graphene oxide (rGO) as a strain sensor undergoing repeated large mechanical strains up to 20.72%, with electrical signal output measurement in multiple directions relative to the applied strain. Strain is one the most basic and most common stimuli sensed. rGO can be synthesized from abundant materials, can survive exposure to large strains (up to 20.72%), can be synthesized directly on structures with relative ease, and provides high sensitivity, with gauge factors up to 200 regularly reported. In this investigation, a suspension of graphene oxide flakes was deposited onto Polydimethylsiloxane (PDMS) substrates and thermally reduced to create macroscopic rGO-strain sensors. Electrical resistance parallel to the direction of applied tension (x^) demonstrated linear behavior (similar to the piezoresistive behavior of solid materials under strain) up to strains around 7.5%, beyond which nonlinear resistive behavior (similar to percolative electrical behavior) was observed. Cyclic tensile testing results suggested that some residual micro-cracks remained in place after relaxation from the first cycle of tensile loading. A linear fit across the range of strains investigated produced a gauge factor of 91.50(Ω/Ω)/(m/m), though it was observed that the behavior at high strains was clearly nonlinear. Hysteresis testing showed high consistency in the electromechanical response of the sensor between loading and unloading within cycles as well as increased consistency in the pattern of the response between different cycles starting from cycle 2. 
                        more » 
                        « less   
                    
                            
                            Effect of Area Density on Sensitivity and Strain Survival of Reduced Graphene Oxide Under Large Strains
                        
                    
    
            Abstract Strain sensors are the primary, direct sensing element in many sensors with applications in robotics, wearable sensors, structural health monitoring, and beyond. Cutting edge applications are increasing demand for sensors that can survive and measure large strains (> 5%). Presently, the most common strain sensors are composed of a serpentine metal foil which can survive strains up to about 5% with a gauge factor (GF) of about 2 (measured as change in resistance divided by initial resistance all over strain). Research into nanoparticle-based strain sensors commonly reports surviving strains up to 50% and gauge factors around 200. Unfortunately, most nanoparticle-based strain sensors are composed of expensive, toxic materials and require high precision synthesis methods. The reduced Graphene Oxide (rGO) based sensors can be synthesized easily with common materials and methods. Study of strain sensing capabilities have revealed that rGO strain sensors can survive strains beyond 15% with gauge factors (sensitivity) on the order of 200. Suspensions of graphene oxide (GO)’s flakes were deposited on flexible Polydimethylsiloxane (PDMS) substrates to create specimens with different area densities of 0.69, 0.80 and 091 mg/cm2 of GO. Specimens were thermally reduced to create rGO-based strain sensors. Resulting sensors were tested under tension applied at a rate of 0.1 mm/sec starting from 0% strain until failure. Resistance of the sensors in the direction aligned with the direction of the applied tension were measured at each 1 mm-increment of tension. Sensitivity and the strain to failure of the sensor were calculated and compared in specimens with different GO area densities. Our study suggests that with increasing the area density of graphene oxide (GO) during the synthesis of rGO, the survivability of the rGO subjected to large strains can be improved while still demonstrating a high sensitivity. This study can help tailor rGO-based strain sensors especially to the applications where high strain survival (> 30%) is required while benefiting from a reasonably good GF (> 30). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113857
- PAR ID:
- 10533868
- Publisher / Repository:
- American Society of Mechanical Engineers
- Date Published:
- ISBN:
- 978-0-7918-8752-3
- Format(s):
- Medium: X
- Location:
- Austin, Texas, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Graphene oxide (GO) films have a great potential for aerospace, electronics, and renewable energy applications due to their low cost and unique properties. For structural applications, they can achieve an exceptional combination of damping and stiffness. This study investigates the effect of packing density, reduction, and water removal on stiffness and damping of graphene oxide films. GO sheets dispersed in water are passed through a filter and deposited on a removable substrate. Through variations of the film fabrication process, films of both GO and reduced GO (rGO) are produced with varying levels of packing. Heat treatment is also used to remove the water in half of the films. The degree of packing is assessed through film density calculations. Microscopy as well as Raman and X-ray spectroscopy are used to measure the degree of packing while Dynamic Mechanical Analysis (DMA) is used to quantity mechanical damping and storage modulus of specimens in tension. Correlating mechanical properties to structure of films revealed new understanding of damping and stress transfer mechanisms in these materials. Optimal structures resulted in superior combinations of stiffness (18 GPa) and damping (0.14), potentially paving the way for using GO based films in advanced structural applications.more » « less
- 
            Graphene oxide (GO) films have great potential for aerospace, electronics, and renewable energy applications. GO sheets are low-cost and water-soluble and retain some of Graphene’s exceptional properties once reduced. GO or reduced GO (rGO) sheets within a film interact with each other via secondary bonds and cross-linkers. These interfacial interactions include non-covalent bonds such as hydrogen bonding, ionic bonding, and π-π stacking. Stress transfer and failure mechanisms in GO and rGO films, specifically how linkers affect them, are not well understood. The present study investigates the influence of inter-particle interactions and film structures, focusing on hydrogen bonds introduced via cellulose nanocrystals (CNC), on failure and stress-transfer of the GO and rGO films. To this end, GO films with CNC crosslinkers were made, followed by a chemical reduction. The few-micron thick films were characterized using tensile testing. All tested films exhibited a brittle failure and achieved tensile strengths and modulus in the ~40-85 MPa and ~3.5-9 GPa ranges, respectively. To reveal stress transfer mechanisms in each sample, tensile in-situ Raman spectroscopy testing was carried out. By monitoring the changes in bandwidth and position of Raman bands while stretching the film, useful information such as sheet slippage and cross-linker interactions were gathered. The addition of CNC enhanced modulus but degraded strength for both GO and rGO films. Interestingly, the Raman G-peak shift at failure, indicative of stress transfer to individual GO/rGO particles, is commensurate with the films’ strengths. Correlating these results with the structure and composition of different films reveals new understanding of stress transfer between GO/rGO particles, paving the way for the scalable manufacturing of strong and stiff GO-based films.more » « less
- 
            Techniques to improve the graphitization of lignin, the second most abundant natural polymer, are in great demand as a viable means to obtain cost- effective and less energy-intensive graphite for various applications. In this work, we report the effects of two-dimensional nanomaterials, graphene oxide (GO) and its derivative, reduced graphene oxide (RGO), used as templating agents for the graphitization of alkali-derived lignin. The hypothesis is that during heat temperature treatment, the GO additives act as a template that allows the lignin matrix to align on its basal planes through π−π interactions. In addition, possible chemical bonding between the GO additives and lignin may extend the two planar frameworks. Results from X-ray diffraction and Raman spectroscopy showed improved graphitic quality in the lignin-GO and lignin-RGO samples compared to pure lignin at 2500 °C. Transmission electron microscopy images and selected area electron diffraction patterns also revealed ordered nanostructures and defined polycrystalline patterns in the lignin-GO and lignin-RGO samples. This work presents a method to synthesize graphitic-like materials using carbon-based templates with the advantage that there is no need for further purification of the final material as in the case of transition metal catalysts.more » « less
- 
            Abstract Graphene oxide (GO)‐based all‐solid‐state supercapacitors (GO‐A3Ss) are superior over liquid electrolyte‐based supercapacitors and capable of being integrated on a single chip in various geometry shapes for the use of future smart wearable electronics field as a fast energy storage device, but their capacitance need to be improved. Here, a new approach has been developed for enhancing the capacitive capability of the supercapacitors through molecular dynamics simulations with the first‐principle input. A theoretical model of charge storage is developed to understand the unique capacitive enhancement mechanism and to predict the capacitance of the GO‐A3Ss, which agrees well with the experimental observations. A novel supercapacitor with GO and reduced graphene oxide (rGO) alternatively layered structures is designed based on the model, and its energy density is the highest among conventional supercapacitors using liquid electrolytes and all‐solid‐state supercapacitors using aerogels or hydrogels as the solid‐state electrolyte. Based on the predictions, two new types of high‐performance GO/rGO multilayered capacitors are proposed to meet different practical applications. The results of this work provide an approach for the design of high‐performance all‐solid‐state supercapacitors based on GO and rGO materials.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    