skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Disturbed and Globular-cluster-rich Ultradiffuse Galaxy UGC 9050-Dw1
Abstract We investigate the ultradiffuse galaxy (UDG) UGC 9050-Dw1, which was selected because of its disturbed morphology as part of a larger sample of UDGs that display evidence for significant interactions. We use the Hubble Space Telescope’s Advanced Camera for Surveys to identify globular clusters (GCs) associated with UGC 9050-Dw1, and the Jansky Very Large Array to measure its Hicontent. UGC 9050-Dw1, a neighbor to the low surface brightness spiral UGC 9050, exhibits a unique UV-bright central “clump” with clearly associated Higas and an extended stellar tidal plume to the north. We identify 52 ± 12 GCs, implying a specific frequency ofSN= 122 ± 38, one of the highest reported for a UDG of this luminosity ( log L V / L = 7.5 ± 0.1 ). Additionally, ∼20% of the total light of the galaxy is contributed by GCs. Nearly uniform GC colors suggest they were formed during a single intense episode of star formation. We posit that UGC 9050-Dw1 represents the initial definitive observational example of UDG formation resulting from a dwarf merger event, where subsequent clumpy star formation has contributed to its present observed characteristics.  more » « less
Award ID(s):
2205863
PAR ID:
10533878
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
954
Issue:
2
ISSN:
2041-8205
Page Range / eLocation ID:
L39
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from log M star / M 8 to log M star / M 11 , with a median of log M star / M med 10 and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with log M star / M 9.3 (>3.7σ). For galaxies with log M star / M 10.6 , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings. 
    more » « less
  2. Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of log N OVI / cm 2 13.7 . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of log N NeVIII / cm 2 14.0 . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from log M star / M 8 to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with log M star / M 9 11 show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of log M star / M > 9 within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with log M star / M 9 10 based on their high ionization fractions in the CGM. 
    more » « less
  3. Abstract We report the discovery of Corvus A, a low-mass, gas-rich galaxy at a distance of approximately 3.5 Mpc, identified in DR10 of the Dark Energy Camera Legacy Imaging Survey during the initial phase of our ongoing SEmi-Automated Machine LEarning Search for Semi-resolved galaxies (SEAMLESS). Jansky Very Large Array observations of Corvus A detect Hiline emission at a radial velocity of 523 ± 2 km s−1. Magellan/Megacam imaging reveals an irregular and complex stellar population with both young and old stars. We detect UV emission in Neil Gehrels Swift observations, indicative of recent star formation. However, there are no signs of Hiiregions in Hαimaging from Steward Observatory’s Kuiper telescope. Based on the Megacam color–magnitude diagram we measure the distance to Corvus A via the tip of the red giant branch standard candle as 3.48 ± 0.24 Mpc. This makes Corvus A remarkably isolated, with no known galaxy within ∼1 Mpc. Based on this distance, we estimate the Hiand stellar mass of Corvus A to be log M H I / M = 6.59 and log M * / M = 6.0 , respectively. Although there are some signs of rotation, the Hidistribution of Corvus A appears to be close to face on, analogous to that of Leo T, and we therefore do not attempt to infer a dynamical mass from its Hiline width. Higher-resolution synthesis imaging is required to confirm this morphology and to draw robust conclusions from its gas kinematics. 
    more » « less
  4. Abstract We present ∼300 stellar metallicity measurements in two faint M31 dwarf galaxies, Andromeda XVI (MV= −7.5) and Andromeda XXVIII (MV= –8.8), derived using metallicity-sensitive calcium H and K narrowband Hubble Space Telescope imaging. These are the first individual stellar metallicities in And XVI (95 stars). Our And XXVIII sample (191 stars) is a factor of ∼15 increase over literature metallicities. For And XVI, we measure [Fe/H] = 2.17 0.05 + 0.05 , σ [Fe/H] = 0.33 0.07 + 0.07 , and ∇[Fe/H]= −0.23 ± 0.15 dex R e 1 . We find that And XVI is more metal-rich than Milky Way ultrafaint dwarf galaxies of similar luminosity, which may be a result of its unusually extended star formation history. For And XXVIII, we measure [Fe/H] = 1.95 0.04 + 0.04 , σ [Fe/H] = 0.34 0.05 + 0.05 , and ∇[Fe/H]= −0.46 ± 0.10 dex R e 1 , placing it on the dwarf galaxy mass–metallicity relation. Neither galaxy has a metallicity distribution function (MDF) with an abrupt metal-rich truncation, suggesting that star formation fell off gradually. The stellar metallicity gradient measurements are among the first for faint (L≲ 106L) galaxies outside the Milky Way halo. Both galaxies’ gradients are consistent with predictions from the FIRE simulations, where an age–gradient strength relationship is the observational consequence of stellar feedback that produces dark matter cores. We include a catalog for community spectroscopic follow-up, including 19 extremely metal-poor ([Fe/H] < –3.0) star candidates, which make up 7% of And XVI’s MDF and 6% of And XXVIII’s. 
    more » « less
  5. Abstract We use the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array to detect CO(1–0), CO(3–2), and rest-frame 349 GHz continuum emission from an Hi-selected galaxy, DLA1020+2733g, atz ≈ 2.3568 in the field of thez= 2.3553 damped Lyαabsorber (DLA) toward QSO J1020+2733. The VLA CO(1–0) detection yields a molecular gas mass of (2.84 ± 0.42) × 1011 × (αCO/4.36)M, the largest ever measured in an Hi-selected galaxy. The DLA metallicity is +0.28 ± 0.16, from the Zniiλ2026 absorption line detected in a Keck Echellette Spectrograph and Imager spectrum. This continues the trend of high-metallicity DLAs being frequently associated with massive galaxies. We obtain a star formation rate (SFR) of ≲400Myr−1from the rest-frame 349 GHz continuum emission and a relatively long molecular gas depletion timescale of ≳0.6 Gyr. The excitation of theJ= 3 rotational level is subthermal, with r 31 L CO ( 3 2 ) / L CO ( 1 0 ) = 0.513 ± 0.081 , suggesting that DLA1020+2733g has a low SFR surface density. The large velocity spread of the CO lines, ≈500 km s−1, and the long molecular gas depletion timescale suggest that DLA1020+2733g is likely to be a cold rotating-disk galaxy. 
    more » « less