skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transferring Soft Doubly Re-Entrant Microstructures For Mechanically Resilient Omniphobic Surfaces
Omniphobic surfaces, capable of repelling all types of liquids, are fundamentally reliant on the micro/nano doubly re-entrant structures, these overhanging structures, however, are prone to break under mechanical loading. Here, we report a robust technique to faithfully transfer an array of soft doubly re-entrant microstructures onto a target substrate, circumventing the limitation of demolding soft overhang structures, to realize a resilient omniphobic surface for the first time. The resulting surface not only exhibits omniphobic property, but also robust durability after substantial normal and shear mechanical stresses. The side view of the deformation and recovery of the structures against mechanical loads was captured under a microscope to help reveal the underlying mechanism. The innovative method presented in this study is scalable for the production of mechanically robust, omniphobic surfaces on a large scale. Such advancement facilitates the large-scale manufacturing of durable micro- and nanoscale surface textures, making them viable for practical applications.  more » « less
Award ID(s):
2225964
PAR ID:
10533939
Author(s) / Creator(s):
;
Publisher / Repository:
Hilton Head Workshop 2024: A Solid-State Sensors, Actuators and Microsystems Workshop
Date Published:
Page Range / eLocation ID:
275-277
Format(s):
Medium: X
Location:
Hilton Head Island, SC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Zero Poisson’s ratio structures are a new class of mechanical metamaterials wherein the absence of lateral deformations allows the structure to adapt and conform their geometries to desired shapes with minimal interventions. These structures have gained attention in large deformation applications where shape control is a key performance attribute, with examples including but not limited to shape morphing, soft robotics, and flexible electronics. The present study introduces an experimentally driven approach that leads to the design and development of (near) zero Poisson’s ratio structures with considerable load-bearing capacities through concurrent density and architecture gradations in hybrid honeycombs created from hexagonal and re-entrant cells. The strain-dependent Poisson’s ratios in hexagonal and re-entrant honeycombs with various cell wall thicknesses have been characterized experimentally. A mathematical approach is then proposed and utilized to create hybrid structures wherein the spatial distribution of different cell shapes and densities leads to the development of honeycombs with minimal lateral deformations under compressive strains as high as 0.7. Although not considered design criteria, the load-bearing and energy absorption capacities of the hybrid structures are shown to be comparable with those of uniform cell counterparts. Finally, the new hybrid structures indicate lesser degrees of instability (in the form of cell buckling and collapse) due to the self-constraining effects imposed internally by the adjacent cell rows in the structures. 
    more » « less
  2. Abstract Minimally invasive endovascular therapy (MIET) is an innovative technique that utilizes percutaneous access and transcatheter implantation of medical devices to treat vascular diseases. However, conventional devices often face limitations such as incomplete or suboptimal treatment, leading to issues like recanalization in brain aneurysms, endoleaks in aortic aneurysms, and paravalvular leaks in cardiac valves. In this study, we introduce a new metastructure design for MIET employing re-entrant honeycomb structures with negative Poisson’s ratio (NPR), which are initially designed through topology optimization and subsequently mapped onto a cylindrical surface. Using ferromagnetic soft materials, we developed structures with adjustable mechanical properties called magnetically activated structures (MAS). These magnetically activated structures can change shape under noninvasive magnetic fields, letting them fit against blood vessel walls to fix leaks or movement issues. The soft ferromagnetic materials allow the stent design to be remotely controlled, changed, and rearranged using external magnetic fields. This offers accurate control over stent placement and positioning inside blood vessels. We performed magneto-mechanical simulations to evaluate the proposed design’s performance. Experimental tests were conducted on prototype beams to assess their bending and torsional responses to external magnetic fields. The simulation results were compared with experimental data to determine the accuracy of the magneto-mechanical simulation model for ferromagnetic soft materials. After validating the model, it was used to analyze the deformation behavior of the plane matrix and cylindrical structure designs of the Negative Poisson’s Ratio (NPR) metamaterial. The results indicate that the plane matrix NPR metamaterial design exhibits concurrent vertical and horizontal expansion when subjected to an external magnetic field. In contrast, the cylindrical structure demonstrates simultaneous axial and radial expansion under the same conditions. The preliminary findings demonstrate the considerable potential and practicality of the proposed methodology in the development of magnetically activated MIET devices, which offer biocompatibility, a diminished risk of adverse reactions, and enhanced therapeutic outcomes. Integrating ferromagnetic soft materials into mechanical metastructures unlocks promising opportunities for designing stents with adjustable mechanical properties, propelling the field towards more sophisticated minimally invasive vascular interventions. 
    more » « less
  3. Passive thermal management is of interest in cooling of electronics and avionics in terrestrial and reduced gravity environments. This paper describes the use of microscale asymmetric surface patterns, or ratchets, to generate preferential fluid motion during phase change. The asymmetric patterns take the form of an array of ratchet structures. Preferentially directed bubble growth is demonstrated for boiling on surfaces with such ratchets augmented with re-entrant cavities to produce nucleation at preferred sites. During pool boiling in FC-72, the asymmetric geometry of microstructures causes bubbles to grow normal to the sloped surface rather than in a vertical direction, resulting in a net motion in a preferential direction. Bubble growth from the re-entrant cavities is studied using high-speed photography and image processing techniques. The concept of self-propulsion is extended to an open-ended channel configuration, wherein high-speed videos that document preferential motion of vapor slugs with velocities in the range of several mm/s are presented. Liquid motion is explained using a semi-empirical force balance. 
    more » « less
  4. Passive thermal management is of interest in cooling of electronics and avionics in terrestrial and reduced gravity environments. This paper describes the use of microscale asymmetric surface patterns, or ratchets, to generate preferential fluid motion during phase change. The asymmetric patterns take the form of an array of ratchet structures. Preferentially directed bubble growth is demonstrated for boiling on surfaces with such ratchets augmented with re-entrant cavities to produce nucleation at preferred sites. During pool boiling in FC-72, the asymmetric geometry of microstructures causes bubbles to grow normal to the sloped surface rather than in a vertical direction, resulting in a net motion in a preferential direction. Bubble growth from the re-entrant cavities is studied using high-speed photography and image processing techniques. The concept of self-propulsion is extended to an open-ended channel configuration, wherein high-speed videos that document preferential motion of vapor slugs with velocities in the range of several mm/s are presented. Liquid motion is explained using a semi-empirical force balance. 
    more » « less
  5. Additive manufacturing such as vat photopolymerization allows to fabricate intricate geometric structures than conventional manufacturing techniques. However, the manufacturing of lightweight sandwich structures with integrated core and facesheet is rarely fabricated using this process. In this study, photoactivatable liquid resin was used to fabricate sandwich structures with various intricate core topologies including the honeycomb, re-entrant honeycomb, diamond, and square by a vat photopolymerization technique. Uniaxial compression tests were performed to investigate the compressive modulus and strength of these lightweight structures. Sandwich cores with the diamond structure exhibited superior compressive and weight-saving properties whereas the re-entrant structures showed high energy absorption capacity. The fractured regions of the cellular cores were visualized by scanning electron microscopy. Elastoplastic finite element analyses showed the stress distribution of the sandwich structures under compressive loading, which are found to be in good agreement with the experimental results. Dynamic mechanical analysis was performed to compare the behavior of these structures under varying temperatures. All the sandwich structures exhibited more stable thermomechanical properties than the solid materials at elevated temperatures. The findings of this study offer insights into the superior structural and thermal properties of sandwich structures printed by a vat photopolymerization technique, which can benefit a wide range of engineering applications. 
    more » « less