Higher-efficiency, lower-cost refrigeration is needed for both large- and small-scale cooling. Refrigerators using entropy changes during cycles of stretching or hydrostatic compression of a solid are possible alternatives to the vapor-compression fridges found in homes. We show that high cooling results from twist changes for twisted, coiled, or supercoiled fibers, including those of natural rubber, nickel titanium, and polyethylene fishing line. Using opposite chiralities of twist and coiling produces supercoiled natural rubber fibers and coiled fishing line fibers that cool when stretched. A demonstrated twist-based device for cooling flowing water provides high cooling energy and device efficiency. Mechanical calculations describe the axial and spring-index dependencies of twist-enhanced cooling and its origin in a phase transformation for polyethylene fibers.
more »
« less
A Dataset for Research on Water Sustainability
Freshwater scarcity is a global problem that requires collective efforts across all industry sectors. Nevertheless, a lack of access to operational water footprint data bars many applications from exploring optimization opportunities hidden within the temporal and spatial variations. To break this barrier into research in water sustainability, we build a dataset for operation direct water usage in the cooling systems and indirect water embedded in electricity generation. Our dataset consists of the hourly water efficiency of major U.S. cities and states from 2019 to 2023. We also offer cooling system models that capture the impact of weather on water efficiency. We present a preliminary analysis of our dataset and discuss three potential applications that can benefit from it. Our dataset is publicly available at Open Science Framework (OSF).
more »
« less
- PAR ID:
- 10534109
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400704802
- Page Range / eLocation ID:
- 442 to 446
- Format(s):
- Medium: X
- Location:
- Singapore Singapore
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Rigid wet cooling media is a key component of direct and indirect evaporative cooling systems. Evaporation is the process of a substance in a liquid state changing to a gaseous state. When water evaporates only water molecules get evaporated and the other chemicals in the water are left behind on the surface as residue. Many studies have been conducted on how the change in air flow velocity, media depth, porosity and water distribution affect performance of the cooling system. The operational efficiency of the cooling media varies over its life cycle and depends primarily on temperature and speed of inlet air, water distribution system, type of pad and dimension of the pad.Although evaporative cooling when implemented with air-side economization enables efficiency gains, a trade-off between the system maintenance and its operational efficiency exists. In this study, the primary objective is to determine how calcium scale affects the overall performance of the cooling pad and the water system. Areas of the pad that are not wetted effectively allow air to pass through without being cooled and the edges between wetted and dry surface establish sites for scale formation. An Accelerated Degradation Testing (ADT) by rapid wetting and drying on the media pads at elevated levels of calcium is designed and conducted on the cellulose wet cooling media pad. This research focuses on monitoring the degradation that occurs over its usage and establish a key maintenance parameter for water used in media pad.As a novel study, preliminary tests were mandatory because there were no established standards for media pad degradation testing. Sump water conductivity is identified as the key maintenance parameter for monitoring sump replenishing and draining cycles which will result in reduced water usage. The average water conductivity in the sump during wetting cycles increases monotonically when ADT was performed on a new media pad. An empirical relationship between sump water conductivity and number of wetting cycles is proposed. This information will be very helpful for the manufacturers to guide their customers for maintenance of the media pad and sump water drain cycles.more » « less
-
Abstract Data centers have complex environments that undergo constant changes due to fluctuations in IT load, commissioning and decommissioning of IT equipment, heterogeneous rack architectures and varying environmental conditions. These dynamic factors often pose challenges in effectively provisioning cooling systems, resulting in higher energy consumption. To address this issue, it is crucial to consider data center thermal heterogeneity when allocating workloads and controlling cooling, as it can impact operational efficiency. Computational Fluid Dynamics (CFD) models are used to simulate data center heterogeneity and analyze the impact of two different cooling mechanisms on operational efficiency. This research focuses on comparing the cooling based on facility water for Rear Door Heat Exchanger (RDHx) and conventional Computer Room Air Conditioning (CRAH) systems in two different data center configurations. Efficiency is measured in terms of ΔT across facility water. Higher ΔT will result in efficient operation of chillers. The actual chiller efficiency is not calculated as it would depend on local ambient conditions in which the chiller is operated. The first data center model represents a typical enterpriselevel configuration where all servers and racks have homogeneous IT power. The second model represents a colocation facility where server/rack power configurations are randomly distributed. These models predict temperature variations at different locations based on IT workload and cooling parameters. Traditionally, CRAH configurations are selected based on total IT power consumption, rack power density, and required cooling capacity for the entire data center space. On the other hand, RDHx can be scaled based on individual rack power density, offering localized cooling advantages. Multiple workload distribution scenarios were simulated for both CRAH and RDHx-based data center models. The results showed that RDHx provides a uniform thermal profile across the data center, irrespective of server/rack power density or workload distribution. This characteristic reduces the risk of over- or under-provisioning racks when using RDHx. Operational efficiency is compared in terms of difference in supply and return temperature of facility water for CRAH and RDHx units based on spatial heat dissipation and workload distribution. RDHx demonstrated excellent cooling capabilities while maintaining a higher ΔT, resulting in reduced cooling energy consumption, operational carbon footprint (?), and water usage.more » « less
-
Abstract Engineering innovations—including those in heat and mass transfer—are needed to provide food, water, and power to a growing population (i.e., projected to be 9.8 × 109 by 2050) with limited resources. The interweaving of these resources is embodied in the food, energy, and water (FEW) nexus. This review paper focuses on heat and mass transfer applications which involve at least two aspects of the FEW nexus. Energy and water topics include energy extraction of natural gas hydrates and shale gas; power production (e.g., nuclear and solar); power plant cooling (e.g., wet, dry, and hybrid cooling); water desalination and purification; and building energy/water use, including heating, ventilation, air conditioning, and refrigeration technology. Subsequently, this review considers agricultural thermal fluids applications, such as the food and water nexus (e.g., evapotranspiration and evaporation) and the FEW nexus (e.g., greenhouses and food storage, including granaries and freezing/drying). As part of this review, over 100 review papers on thermal and fluid topics relevant to the FEW nexus were tabulated and over 350 research journal articles were discussed. Each section discusses previous research and highlights future opportunities regarding heat and mass transfer research. Several cross-cutting themes emerged from the literature and represent future directions for thermal fluids research: the need for fundamental, thermal fluids knowledge; scaling up from the laboratory to large-scale, integrated systems; increasing economic viability; and increasing efficiency when utilizing resources, especially using waste products.more » « less
-
Immersion cooling has emerged as a promising solution for the escalating thermal management challenges in the contemporary and modern (next generation) data centers, where traditional air-cooling systems are increasingly inadequate due to rising power densities in microprocessors. The evolution of immersion cooling technologies, highlighting their benefits and the challenges associated with their implementation, is explored in this review. Two-phase microchannel cooling has often been cited as a highly efficient alternative, which can help achieve significant energy savings over air cooling. Subsequent studies have expanded on methods like refrigerant touch cooling, thermosiphon systems, and geothermal immersion cooling. All these strategies can help achieve enhanced energy efficiency, reduced operational costs, and improved Power Usage Effectiveness (PUE). Immersion cooling has been demonstrated to support denser CPU packaging and meet the demands of high-performance computing environments. Despite these advantages, challenges persist, including the need for specialized infrastructure, potential risks related to liquid handling, and integration with existing systems. Advances in environmentally friendly cooling fluids and optimized airflow management have begun to mitigate some of these issues. To fully realize the potential of immersion cooling, future research endeavors should focus on developing standardized protocols and best practices to facilitate its widespread adoption. Enhancing the compatibility of cooling fluids with a broader range of hardware components will be crucial, as will designing systems that are easier to integrate with existing data center infrastructure. Exploring hybrid cooling solutions that combine immersion cooling with other efficient methods could offer additional benefits. Further investigation into the long-term reliability, maintenance requirements, and environmental impacts of immersion-cooled systems is essential. Integrating immersion cooling with renewable energy sources and waste heat recovery systems could also enhance sustainability and operational efficiency (e.g., for thermal desalination and wood drying applications). The literature reports can be utilized to identify a clear trend toward adopting immersion cooling as a key strategy for improving energy efficiency and thermal management in data centers. Hence, ongoing research and development efforts need to be redirected to overcoming these remaining obstacles, thus paving the way for more energy efficient data center operations with reduced footprint for water and power consumption in the future; while also improving the sustainability, reliability, robustness, and resilience of these platforms.more » « less
An official website of the United States government

