Driven by the development of machine learning and the development of wireless techniques, lots of research efforts have been spent on the human activity recognition (HAR). Although various deep learning algorithms can achieve high accuracy for recognizing human activities, existing works lack of a theoretical performance upper bound which is the best accuracy that is only limited by the influencing factors in wireless networks such as indoor physical environments and settings of wireless sensing devices regardless of any HAR algorithm. Without the understanding of performance upper bound, mistakenly configuring the influencing factors can reduce the HAR accuracy drastically no matter what deep learning algorithms are utilized. In this paper, we propose the HAR performance upper bound which is the minimum classification error probability that doesn't depend on any HAR algorithms and can be considered as a function of influencing factors in wireless sensing networks for CSI based human activity recognition. Since the performance upper bound can capture the impacts of influencing factors on HAR accuracy, we further analyze the influences of those factors with varying situations such as through the wall HAR and different human activities by MATLAB simulations. 
                        more » 
                        « less   
                    
                            
                            Enhanced Noise-Resilient Pressure Mat System Based on Hyperdimensional Computing
                        
                    
    
            Traditional systems for indoor pressure sensing and human activity recognition (HAR) rely on costly, high-resolution mats and computationally intensive neural network-based (NN-based) models that are prone to noise. In contrast, we design a cost-effective and noise-resilient pressure mat system for HAR, leveraging Velostat for intelligent pressure sensing and a novel hyperdimensional computing (HDC) classifier that is lightweight and highly noise resilient. To measure the performance of our system, we collected two datasets, capturing the static and continuous nature of human movements. Our HDC-based classification algorithm shows an accuracy of 93.19%, improving the accuracy by 9.47% over state-of-the-art CNNs, along with an 85% reduction in energy consumption. We propose a new HDC noise-resilient algorithm and analyze the performance of our proposed method in the presence of three different kinds of noise, including memory and communication, input, and sensor noise. Our system is more resilient across all three noise types. Specifically, in the presence of Gaussian noise, we achieve an accuracy of 92.15% (97.51% for static data), representing a 13.19% (8.77%) improvement compared to state-of-the-art CNNs. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2120019
- PAR ID:
- 10534213
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 24
- Issue:
- 3
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 1014
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Convolutional Neural Networks (CNNs) have been explored to detect forced oscillations in windfarm systems in the past. However, these CNNs require a significant amount of data samples between inference queries and a significant amount of computational power and time. This leads to systems that have a large delay between a forced oscillation occurring and detecting the forced oscillation. This paper presents a novel approach applying Hyperdimensional Computing (HDC) as an effective solution for the first time in forced oscillation detection to overcome the problems of CNNs. HDC is able to reduce the time to detect forced oscillations in two ways: First, by reducing the time needed to collect data to create a new inference sample by reducing the number of data points required. Second, by providing a significantly smaller, more energy efficient, and faster model for detection than current state-of-the-art. Our results show that HDC, with an FPGA implementation, is able to achieve 55× faster detection of forced oscillations in windfarms while achieving the same accuracy as the best current CNN models using software solutions.more » « less
- 
            This paper presents an energy-efficient classification framework that performs human activity recognition (HAR). Typically, HAR classification tasks require a computational platform that includes a processor and memory along with sensors and their interfaces, all of which consume significant power. The presented framework employs microelectromechanical systems (MEMS) based Continuous Time Recurrent Neural Network (CTRNN) to perform HAR tasks very efficiently. In a real physical implementation, we show that the MEMS-CTRNN nodes can perform computing while consuming power on a nano-watts scale compared to the micro-watts state-of-the-art hardware. We also confirm that this huge power reduction doesn't come at the expense of reduced performance by evaluating its accuracy to classify the highly cited human activity recognition dataset (HAPT). Our simulation results show that the HAR framework that consists of a training module, and a network of MEMS-based CTRNN nodes, provides HAR classification accuracy for the HAPT that is comparable to traditional CTRNN and other Recurrent Neural Network (RNN) implantations. For example, we show that the MEMS-based CTRNN model average accuracy for the worst-case scenario of not using pre-processing techniques, such as quantization, to classify 5 different activities is 77.94% compared to 78.48% using the traditional CTRNN.more » « less
- 
            In this work, we present a novel non-visual HAR system that achieves state-of-the-art performance on realistic SCE tasks via a single wearable sensor. We leverage surface electromyography and inertial data from a low-profile wearable sensor to attain performant robot perception while remaining unobtrusive and user-friendly. By capturing both convolutional and temporal features with a hybrid CNN-LSTM classifier, our system is able to robustly and effectively classify complex, full-body human activities with only this single sensor. We perform a rigorous analysis of our method on two datasets representative of SCE tasks, and compare performance with several prominent HAR algorithms. Results show our system substantially outperforms rival algorithms in identifying complex human tasks from minimal sensing hardware, achieving F1-scores up to 84% over 31 strenuous activity classes. To our knowledge, we are the first to robustly identify complex full-body tasks using a single, unobtrusive sensor feasible for real-world use in SCEs. Using our approach, robots will be able to more reliably understand human activity, enabling them to safely navigate sensitive, crowded spaces.more » « less
- 
            Hyperdimensional computing (HDC) is a computing paradigm inspired by the mechanisms of human memory, characterizing data through high-dimensional vector representations, known as hypervectors. Recent advancements in HDC have explored its potential as a learning model, leveraging its straightforward arithmetic and high efficiency. The traditional HDC frameworks are hampered by two primary static elements: randomly generated encoders and fixed learning rates. These static components significantly limit model adaptability and accuracy. The static, randomly generated encoders, while ensuring high-dimensional representation, fail to adapt to evolving data relationships, thereby constraining the model’s ability to accurately capture and learn from complex patterns. Similarly, the fixed nature of the learning rate does not account for the varying needs of the training process over time, hindering efficient convergence and optimal performance. This paper introduces\(\mathsf {TrainableHD} \), a novel HDC framework that enables dynamic training of the randomly generated encoder depending on the feedback of the learning data, thereby addressing the static nature of conventional HDC encoders.\(\mathsf {TrainableHD} \)also enhances the training performance by incorporating adaptive optimizer algorithms in learning the hypervectors. We further refine\(\mathsf {TrainableHD} \)with effective quantization to enhance efficiency, allowing the execution of the inference phase in low-precision accelerators. Our evaluations demonstrate that\(\mathsf {TrainableHD} \)significantly improves HDC accuracy by up to 27.99% (averaging 7.02%) without additional computational costs during inference, achieving a performance level comparable to state-of-the-art deep learning models. Furthermore,\(\mathsf {TrainableHD} \)is optimized for execution speed and energy efficiency. Compared to deep learning on a low-power GPU platform like NVIDIA Jetson Xavier,\(\mathsf {TrainableHD} \)is 56.4 times faster and 73 times more energy efficient. This efficiency is further augmented through the use of Encoder Interval Training (EIT) and adaptive optimizer algorithms, enhancing the training process without compromising the model’s accuracy.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    