skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A generalizable new figure of merit for dose optimization in dual energy cone beam CT scanning protocols
Abstract Objective. This study proposes and evaluates a new figure of merit (FOMn) for dose optimization of Dual-energy cone-beam CT (DE-CBCT) scanning protocols based on size-dependent modeling of radiation dose and multi-scale image quality.Approach. FOMn was defined using Z-score normalization and was proportional to the dose efficiency providing better multi-scale image quality, including comprehensive contrast-to-noise ratio (CCNR) and electron density (CED) for CatPhan604 inserts of various materials. Acrylic annuluses were combined with CatPhan604 to create four phantom sizes (diameters of the long axis are 200 mm, 270 mm, 350 mm, and 380 mm, respectively). DE-CBCT was decomposed using image-domain iterative methods based on Varian kV-CBCT images acquired using 25 protocols (100 kVp and 140 kVp combined with 5 tube currents).Main results. The accuracy of CED was approximately 1% for all protocols, but degraded monotonically with the increased phantom sizes. Combinations of lower voltage + higher current and higher voltage + lower current were optimal protocols balancing CCNR and dose. The most dose-efficient protocols for CED and CCNR were inconsistent, underlining the necessity of including multi-scale image quality in the evaluation and optimization of DE-CBCT. Pediatric and adult anthropomorphic phantom tests confirmed dose-efficiency of FOMn-recommended protocols.Significance. FOMn is a comprehensive metric that collectively evaluates radiation dose and multi-scale image quality for DE-CBCT. The models and data can also serve as lookup tables, suggesting personalized dose-efficient protocols for specific clinical imaging purposes.  more » « less
Award ID(s):
1918925
PAR ID:
10534226
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Institute of Physics and Engineering in Medicine
Date Published:
Journal Name:
Physics in Medicine & Biology
Volume:
68
Issue:
18
ISSN:
0031-9155
Page Range / eLocation ID:
185021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photoacoustic imaging has demonstrated recent promise for surgical guidance, enabling visualization of tool tips during surgical and non-surgical interventions. To receive photoacoustic signals, most conventional transducers are rigid, while a flexible array is able to deform and provide complete contact on surfaces with different geometries. In this work, we present photoacoustic images acquired with a flexible array transducer in multiple concave shapes in phantom andex vivobovine liver experiments targeted toward interventional photoacoustic applications. We validate our image reconstruction equations for known sensor geometries with simulated data, and we provide empirical elevation field-of-view, target position, and image quality measurements. The elevation field-of-view was 6.08 mm at a depth of 4 cm and greater than 13 mm at a depth of 5 cm. The target depth agreement with ground truth ranged 98.35-99.69%. The mean lateral and axial target sizes when imaging 600μm-core-diameter optical fibers inserted within the phantoms ranged 0.98-2.14 mm and 1.61-2.24 mm, respectively. The mean ± one standard deviation of lateral and axial target sizes when surrounded by liver tissue were 1.80±0.48 mm and 2.17±0.24 mm, respectively. Contrast, signal-to-noise, and generalized contrast-to-noise ratios ranged 6.92–24.42 dB, 46.50–67.51 dB, and 0.76–1, respectively, within the elevational field-of-view. Results establish the feasibility of implementing photoacoustic-guided surgery with a flexible array transducer. 
    more » « less
  2. In bone-imaging research,in situsynchrotron radiation micro-computed tomography (SRµCT) mechanical tests are used to investigate the mechanical properties of bone in relation to its microstructure. Low-dose computed tomography (CT) is used to preserve bone's mechanical properties from radiation damage, though it increases noise. To reduce this noise, the self-supervised deep learning method Noise2Inverse was used on low-dose SRµCT images where segmentation using traditional thresholding techniques was not possible. Simulated-dose datasets were created by sampling projection data at full, one-half, one-third, one-fourth and one-sixth frequencies of anin situSRµCT mechanical test. After convolutional neural networks were trained, Noise2Inverse performance on all dose simulations was assessed visually and by analyzing bone microstructural features. Visually, high image quality was recovered for each simulated dose. Lacunae volume, lacunae aspect ratio and mineralization distributions shifted slightly in full, one-half and one-third dose network results, but were distorted in one-fourth and one-sixth dose network results. Following this, new models were trained using a larger dataset to determine differences between full dose and one-third dose simulations. Significant changes were found for all parameters of bone microstructure, indicating that a separate validation scan may be necessary to apply this technique for microstructure quantification. Noise present during data acquisition from the testing setup was determined to be the primary source of concern for Noise2Inverse viability. While these limitations exist, incorporating dose calculations and optimal imaging parameters enables self-supervised deep learning methods such as Noise2Inverse to be integrated into existing experiments to decrease radiation dose. 
    more » « less
  3. A body of studies has proposed to obtain high-quality images from low-dose and noisy Computed Tomography (CT) scans for radiation reduction. However, these studies are designed for population-level data without considering the variation in CT devices and individuals, limiting the current approaches' performance, especially for ultra-low-dose CT imaging. Here, we proposed PIMA-CT, a physical anthropomorphic phantom model integrating an unsupervised learning framework, using a novel deep learning technique called Cyclic Simulation and Denoising (CSD), to address these limitations. We first acquired paired low-dose and standard-dose CT scans of the phantom and then developed two generative neural networks: noise simulator and denoiser. The simulator extracts real low-dose noise and tissue features from two separate image spaces (e.g., low-dose phantom model scans and standard-dose patient scans) into a unified feature space. Meanwhile, the denoiser provides feedback to the simulator on the quality of the generated noise. In this way, the simulator and denoiser cyclically interact to optimize network learning and ease the denoiser to simultaneously remove noise and restore tissue features. We thoroughly evaluate our method for removing both real low-dose noise and Gaussian simulated low-dose noise. The results show that CSD outperforms one of the state-of-the-art denoising algorithms without using any labeled data (actual patients' low-dose CT scans) nor simulated low-dose CT scans. This study may shed light on incorporating physical models in medical imaging, especially for ultra-low level dose CT scans restoration. 
    more » « less
  4. X-ray phase contrast imaging (PCI) combined with phase retrieval has the potential to improve soft-material visibility and discrimination. This work examined the accuracy, image quality gains, and robustness of a spectral phase retrieval method proposed by our group. Spectroscopic PCI measurements of a physical phantom were obtained using state-of-the-art photon-counting detectors in combination with a polychromatic x-ray source. The phantom consisted of four poorly attenuating materials. Excellent accuracy was demonstrated in simultaneously retrieving the complete refractive properties (photoelectric absorption, attenuation, and phase) of these materials. Approximately 10 times higher SNR was achieved in retrieved images compared to the original PCI intensity image. These gains are also shown to be robust against increasing quantum noise, even for acquisition times as low as 1 s with a low-flux microfocus x-ray tube (average counts of 250 photons/pixels). We expect that this spectral phase retrieval method, adaptable to several PCI geometries, will allow significant dose reduction and improved material discrimination in clinical and industrial x-ray imaging applications. 
    more » « less
  5. Abstract Objective. UNet-based deep-learning (DL) architectures are promising dose engines for traditional linear accelerator (Linac) models. Current UNet-based engines, however, were designed differently with various strategies, making it challenging to fairly compare the results from different studies. The objective of this study is to thoroughly evaluate the performance of UNet-based models on magnetic-resonance (MR)-Linac-based intensity-modulated radiation therapy (IMRT) dose calculations.Approach. The UNet-based models, including the standard-UNet, cascaded-UNet, dense-dilated-UNet, residual-UNet, HD-UNet, and attention-aware-UNet, were implemented. The model input is patient CT and IMRT field dose in water, and the output is patient dose calculated by DL model. The reference dose was calculated by the Monaco Monte Carlo module. Twenty training and ten test cases of prostate patients were included. The accuracy of the DL-calculated doses was measured using gamma analysis, and the calculation efficiency was evaluated by inference time.Results. All the studied models effectively corrected low-accuracy doses in water to high-accuracy patient doses in a magnetic field. The gamma passing rates between reference and DL-calculated doses were over 86% (1%/1 mm), 98% (2%/2 mm), and 99% (3%/3 mm) for all the models. The inference times ranged from 0.03 (graphics processing unit) to 7.5 (central processing unit) seconds. Each model demonstrated different strengths in calculation accuracy and efficiency; Res-UNet achieved the highest accuracy, HD-UNet offered high accuracy with the fewest parameters but the longest inference, dense-dilated-UNet was consistently accurate regardless of model levels, standard-UNet had the shortest inference but relatively lower accuracy, and the others showed average performance. Therefore, the best-performing model would depend on the specific clinical needs and available computational resources.Significance. The feasibility of using common UNet-based models for MR-Linac-based dose calculations has been explored in this study. By using the same model input type, patient training data, and computing environment, a fair assessment of the models’ performance was present. 
    more » « less