Abstract It remains a challenge to design aqueous electrolytes to secure the complete reversibility of zinc metal anodes. The concentrated water‐in‐salt electrolytes, e.g., 30 m ZnCl2, are promising candidates to address the challenges of the Zn metal anode. However, the pure 30 m ZnCl2electrolyte fails to deliver a smooth surface morphology and a practically relevant Coulombic efficiency. Herein, it is reported that a small concentration of vanillin, 5 mg mLwater−1, added to 30 m ZnCl2transforms the reversibility of Zn metal anode by eliminating dendrites, lowering the Hammett acidity, and forming an effective solid electrolyte interphase. The presence of vanillin in the electrolyte enables the Zn metal anode to exhibit a high Coulombic efficiency of 99.34% at a low current density of 0.2 mA cm−2, at which the impacts of the hydrogen evolution reaction are allowed to play out. Using this new electrolyte, a full cell Zn metal battery with an anode/cathode capacity (N/P) ratio of 2:1 demonstrates no capacity fading over 800 cycles.
more »
« less
Performance and failure mechanisms of alkaline zinc anodes with addition of calcium zincate (Ca[Zn(OH) 3 ] 2 ·2H 2 O) under industrially relevant conditions
Various zinc anodes with increasing calcium zincate (0%, 30%, 70%, 100%) were cycled at 50% theoretical Zn utilization to investigate cycle life and estimated cost. Failure mechanisms of majority 70% Zn/30% CaZn anodes are compared with pure CaZn.
more »
« less
- PAR ID:
- 10534404
- Publisher / Repository:
- Energy Advances
- Date Published:
- Journal Name:
- Energy Advances
- Volume:
- 3
- Issue:
- 8
- ISSN:
- 2753-1457
- Page Range / eLocation ID:
- 1932 to 1947
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Si‐based anodes with a stiff diamond structure usually suffer from sluggish lithiation/delithiation reaction due to low Li‐ion and electronic conductivity. Here, a novel ternary compound ZnSi2P3with a cation‐disordered sphalerite structure, prepared by a facile mechanochemical method, is reported, demonstrating faster Li‐ion and electron transport and greater tolerance to volume change during cycling than the existing Si‐based anodes. A composite electrode consisting of ZnSi2P3and carbon achieves a high initial Coulombic efficiency (92%) and excellent rate capability (950 mAh g−1at 10 A g−1) while maintaining superior cycling stability (1955 mAh g−1after 500 cycles at 300 mA g−1), surpassing the performance of most Si‐ and P‐based anodes ever reported. The remarkable electrochemical performance is attributed to the sphalerite structure that allows fast ion and electron transport and the reversible Li‐storage mechanism involving intercalation and conversion reactions. Moreover, the cation‐disordered sphalerite structure is flexible to ionic substitutions, allowing extension to a family of Zn(Cu)Si2+xP3solid solution anodes (x= 0, 2, 5, 10) with large capacity, high initial Coulombic efficiency, and tunable working potentials, representing attractive anode candidates for next‐generation, high‐performance, and low‐cost Li‐ion batteries.more » « less
-
The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.more » « less
-
Abstract Bis‐porphyrin nanocages (M2BiCage, M = FeCl, Co, Zn) and their host‐guest complexes with C60and C70were used to examine how molecular porosity and interactions with carbon nanomaterials affect the CO2reduction activity of metalloporphyrin electrocatalysts. The cages were found to adsorb on carbon black to provide electrocatalytic inks with excellent accessibilities of the metal sites (≈50%) even at high metal loadings (2500 nmol cm−2), enabling good activity for reducing CO2to CO. A complex of C70bound inside(FeCl)2BiCageachieves high current densities for CO formation at low overpotentials (|jCO| >7 mA cm−2,η= 320 mV; >13.5 mA cm−2,η= 520 mV) with ≥95% Faradaic efficiency (FECO), andCo2BiCageachieves high turnover frequencies (≈1300 h−1,η= 520 mV) with 90% FECO. In general, blocking the pore with C60or C70improves the catalytic performance of(FeCl)2BiCageand has only small effects onCo2BiCage, indicating that the good catalytic properties of the cages cannot be attributed to their internal pores. Neither enhanced electron transfer rates nor metal‐fullerene interactions appear to underlie the ability of C60/C70to improve the performance of(FeCl)2BiCage, in contrast to effects often proposed for other carbon nanosupports.more » « less
An official website of the United States government

