skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Room temperature DNP of diamond powder using frequency modulation
Dynamic nuclear polarization (DNP) is a method of enhancing NMR signals via the transfer of polarization from electron spins to nuclear spins using microwave (MW) irradiation. In most cases, monochromatic continuous-wave (MCW) MW irradiation is used. Recently, several groups have shown that frequency modulation of the MW irradiation can result in an additional increase in DNP enhancement above that obtained with MCW. The effect of frequency modulation on the solid effect (SE) and the cross effect (CE) has previously been studied using the stable organic radical 4-hydroxy TEMPO (TEMPOL) at temperatures under 20 K. Here, in addition to the SE and CE, we discuss the effect of frequency modulation on the Overhauser effect (OE) and the truncated CE (tCE) in the room-temperature 13C-DNP of diamond powders. We recently showed that diamond powders can exhibit multiple DNP mechanisms simultaneously due to the heterogeneity of P1 (substitutional nitrogen) environments within diamond crystallites. We explore how the two parameters that define the frequency modulation: (i) the Modulation frequency, fm (how fast the microwave frequency is varied) and (ii) the Modulation amplitude, Δω (the magnitude of the change in microwave frequency) influence the enhancement obtained via each mechanism. Frequency modulation during DNP not only allows us to improve DNP enhancement, but also gives us a way to control which DNP mechanism is most active. By choosing the appropriate modulation parameters, we can selectively enhance some mechanisms while simultaneously suppressing others.  more » « less
Award ID(s):
1921199
PAR ID:
10539201
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Solid State Nuclear Magnetic Resonance
Volume:
122
Issue:
C
ISSN:
0926-2040
Page Range / eLocation ID:
101833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Dynamic nuclear polarization (DNP) can amplify the solid-state nuclear magnetic resonance (NMR) signal by several orders of magnitude. The mechanism of DNP utilizing α,γ- Bisdiphenylene-β-phenylallyl (BDPA) variants as Polarizing Agents (PA) has been the subject of lively discussions on account of their remarkable DNP efficiency with low demand for microwave power. We propose that electron spin clustering of SA-BDPA is responsible for its DNP performance, as revealed by the temperature-dependent shape of the central DNP profile and strong electron-electron (e-e) crosstalk seen by Electron Double Resonance. We demonstrate that a multi-electron spin cluster can be modeled with three coupled spins, where electron J (exchange) coupling between one of the e-e pairs matching the NMR Larmor frequency induces the experimentally observed absorptive central DNP profile, and the electron T1e modulated by temperature and magic angle spinning alters the shape between an absorptive and dispersive feature. Understanding the microscopic origin is key to designing new PAs to harness the microwave power-efficient DNP effect observed with BDPA variants. 
    more » « less
  2. Dynamic Nuclear Polarization (DNP) utilizing Electron Spin Clusters to achieve resonance matching with the nucleus and to generate an Asymmetric Polarization Elevation (ESCAPE-DNP, or ESC-DNP for short) by monochromatic microwave irradiation at a select frequency is debuted as a promising mechanism to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. In this paper, we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for 1H NMR at 7 Tesla, supported by experimental data and quantum mechanical simulations. A slow relaxing (T1e ≈ 1 ms) four electron spin cluster is found to require at least two electron pairs with e-e distances of 8 Å or below to yield any meaningful 1H ESC-DNP NMR enhancement, while squeezing the rest of the e-e distances to 12 Å or below gives rise to near maximum 1H ESC-DNP-NMR enhancements. For the more common case of a fast-relaxing spin cluster (T1e ≈ 1 μs), efficient ESC-DNP is found to require an asymmetric ESC that contains a cluster of strongly coupled narrow-line radicals coexisting with a weakly coupled narrow-line radical acting as a sensitizer to extract polarization from the cluster. This study highlights the untapped potential of utilizing strong coupling of narrow-line radical clusters to achieve microwave power-efficient DNP that extends design options beyond what is available today and offers great tunability at high magnetic field. 
    more » « less
  3. Abstract Dynamic nuclear polarization (DNP) is a powerful tool to enhance the NMR signals of molecules by transferring polarization from unpaired electron spins to nuclei through microwave irradiation. The resulting signal enhancements can enable the analysis of samples that have previously been intractable by NMR spectroscopy, including proteins, nucleic acids, and metabolites in cells. To carry out DNP, the sample is doped with a polarization agent, a biradical containing two nitroxide moieties. DNP applications in cells, however, present significant challenges as nitroxides are often susceptible to the reducing cellular environment. Here, we introduce a novel polarization agent, POPAPOL, that exhibits increased lifetimes under reducing conditions. We also compare its bioresistance and DNP performance with three popular, commercially available polarization agents. Our work indicates that pyrrolidine‐based nitroxides can outperform piperidine‐based nitroxides in cellular environments, and that future polarization agent designs must carefully balance DNP performance and stability for cellular applications. 
    more » « less
  4. Color-center–hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center–assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition—where the P1 Zeeman splitting matches one of the NV spin transitions—we demonstrate efficient microwave-free 13 C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13 C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal. 
    more » « less
  5. Understanding the spatial distribution of the P1 centers is crucial for diamond-based sensors and quantum devices. P1 centers serve as polarization sources for dynamic nuclear polarization (DNP) quantum sensing and play a significant role in the relaxation of nitrogen vacancy (NV) centers. Additionally, the distribution of NV centers correlates with the distribution of P1 centers, as NV centers are formed through the conversion of P1 centers. We utilized DNP and pulsed electron paramagnetic resonance (EPR) techniques that revealed strong clustering of a significant population of P1 centers that exhibit exchange coupling and produce asymmetric line shapes. The 13C DNP frequency profile at a high magnetic field revealed a pattern that requires an asymmetric EPR line shape of the P1 clusters with electron–electron (e–e) coupling strengths exceeding the 13C nuclear Larmor frequency. EPR and DNP characterization at high magnetic fields was necessary to resolve energy contributions from different e–e couplings. We employed a two-frequency pump–probe pulsed electron double resonance technique to show cross-talk between the isolated and clustered P1 centers. This finding implies that the clustered P1 centers affect all of the P1 populations. Direct observation of clustered P1 centers and their asymmetric line shape offers a novel and crucial insight into understanding magnetic noise sources for quantum information applications of diamonds and for designing diamond-based polarizing agents with optimized DNP efficiency for 13C and other nuclear spins of analytes. We propose that room temperature 13C DNP at a high field, achievable through straightforward modifications to existing solution-state NMR systems, is a potent tool for evaluating and controlling diamond defects. 
    more » « less