skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Macroscopic scalar curvature and codimension 2 width
We show that a complete [Formula: see text]-dimensional Riemannian manifold [Formula: see text] with finitely generated first homology has macroscopic dimension [Formula: see text] if it satisfies the following “macroscopic curvature” assumptions: every ball of radius [Formula: see text] in [Formula: see text] has volume at most [Formula: see text], and every loop in every ball of radius [Formula: see text] in [Formula: see text] is null-homologous in the concentric ball of radius [Formula: see text].  more » « less
Award ID(s):
1926686
PAR ID:
10534631
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific Publishing
Date Published:
Journal Name:
Journal of Topology and Analysis
Volume:
16
Issue:
06
ISSN:
1793-5253
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Assume [Formula: see text]. If [Formula: see text] is an ordinal and X is a set of ordinals, then [Formula: see text] is the collection of order-preserving functions [Formula: see text] which have uniform cofinality [Formula: see text] and discontinuous everywhere. The weak partition properties on [Formula: see text] and [Formula: see text] yield partition measures on [Formula: see text] when [Formula: see text] and [Formula: see text] when [Formula: see text]. The following almost everywhere continuity properties for functions on partition spaces with respect to these partition measures will be shown. For every [Formula: see text] and function [Formula: see text], there is a club [Formula: see text] and a [Formula: see text] so that for all [Formula: see text], if [Formula: see text] and [Formula: see text], then [Formula: see text]. For every [Formula: see text] and function [Formula: see text], there is an [Formula: see text]-club [Formula: see text] and a [Formula: see text] so that for all [Formula: see text], if [Formula: see text] and [Formula: see text], then [Formula: see text]. The previous two continuity results will be used to distinguish the cardinalities of some important subsets of [Formula: see text]. [Formula: see text]. [Formula: see text]. [Formula: see text]. It will also be shown that [Formula: see text] has the Jónsson property: For every [Formula: see text], there is an [Formula: see text] with [Formula: see text] so that [Formula: see text]. 
    more » « less
  2. null (Ed.)
    We propose an Euler transformation that transforms a given [Formula: see text]-dimensional cell complex [Formula: see text] for [Formula: see text] into a new [Formula: see text]-complex [Formula: see text] in which every vertex is part of the same even number of edges. Hence every vertex in the graph [Formula: see text] that is the [Formula: see text]-skeleton of [Formula: see text] has an even degree, which makes [Formula: see text] Eulerian, i.e., it is guaranteed to contain an Eulerian tour. Meshes whose edges admit Eulerian tours are crucial in coverage problems arising in several applications including 3D printing and robotics. For [Formula: see text]-complexes in [Formula: see text] ([Formula: see text]) under mild assumptions (that no two adjacent edges of a [Formula: see text]-cell in [Formula: see text] are boundary edges), we show that the Euler transformed [Formula: see text]-complex [Formula: see text] has a geometric realization in [Formula: see text], and that each vertex in its [Formula: see text]-skeleton has degree [Formula: see text]. We bound the numbers of vertices, edges, and [Formula: see text]-cells in [Formula: see text] as small scalar multiples of the corresponding numbers in [Formula: see text]. We prove corresponding results for [Formula: see text]-complexes in [Formula: see text] under an additional assumption that the degree of a vertex in each [Formula: see text]-cell containing it is [Formula: see text]. In this setting, every vertex in [Formula: see text] is shown to have a degree of [Formula: see text]. We also present bounds on parameters measuring geometric quality (aspect ratios, minimum edge length, and maximum angle of cells) of [Formula: see text] in terms of the corresponding parameters of [Formula: see text] for [Formula: see text]. Finally, we illustrate a direct application of the proposed Euler transformation in additive manufacturing. 
    more » « less
  3. null (Ed.)
    Assume [Formula: see text]. Let [Formula: see text] be a [Formula: see text] equivalence relation coded in [Formula: see text]. [Formula: see text] has an ordinal definable equivalence class without any ordinal definable elements if and only if [Formula: see text] is unpinned. [Formula: see text] proves [Formula: see text]-class section uniformization when [Formula: see text] is a [Formula: see text] equivalence relation on [Formula: see text] which is pinned in every transitive model of [Formula: see text] containing the real which codes [Formula: see text]: Suppose [Formula: see text] is a relation on [Formula: see text] such that each section [Formula: see text] is an [Formula: see text]-class, then there is a function [Formula: see text] such that for all [Formula: see text], [Formula: see text]. [Formula: see text] proves that [Formula: see text] is Jónsson whenever [Formula: see text] is an ordinal: For every function [Formula: see text], there is an [Formula: see text] with [Formula: see text] in bijection with [Formula: see text] and [Formula: see text]. 
    more » « less
  4. We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian [Formula: see text] in a Lipschitz bounded domain [Formula: see text] satisfying the exterior ball condition. The weight is a power of the distance to the boundary [Formula: see text] of [Formula: see text] that accounts for the singular boundary behavior of the solution for any [Formula: see text]. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension [Formula: see text], which is optimal for [Formula: see text]. 
    more » « less
  5. We give examples of (i) a simple theory with a formula (with parameters) which does not fork over [Formula: see text] but has [Formula: see text]-measure 0 for every automorphism invariant Keisler measure [Formula: see text] and (ii) a definable group [Formula: see text] in a simple theory such that [Formula: see text] is not definably amenable, i.e. there is no translation invariant Keisler measure on [Formula: see text]. We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups. 
    more » « less