skip to main content


This content will become publicly available on August 1, 2024

Title: Invariant measures in simple and in small theories
We give examples of (i) a simple theory with a formula (with parameters) which does not fork over [Formula: see text] but has [Formula: see text]-measure 0 for every automorphism invariant Keisler measure [Formula: see text] and (ii) a definable group [Formula: see text] in a simple theory such that [Formula: see text] is not definably amenable, i.e. there is no translation invariant Keisler measure on [Formula: see text]. We also discuss paradoxical decompositions both in the setting of discrete groups and of definable groups, and prove some positive results about small theories, including the definable amenability of definable groups.  more » « less
Award ID(s):
1651321
NSF-PAR ID:
10441599
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Mathematical Logic
Volume:
23
Issue:
02
ISSN:
0219-0613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we develop the theory of residually finite rationally [Formula: see text] (RFR[Formula: see text]) groups, where [Formula: see text] is a prime. We first prove a series of results about the structure of finitely generated RFR[Formula: see text] groups (either for a single prime [Formula: see text], or for infinitely many primes), including torsion-freeness, a Tits alternative, and a restriction on the BNS invariant. Furthermore, we show that many groups which occur naturally in group theory, algebraic geometry, and in 3-manifold topology enjoy this residual property. We then prove a combination theorem for RFR[Formula: see text] groups, which we use to study the boundary manifolds of algebraic curves [Formula: see text] and in [Formula: see text]. We show that boundary manifolds of a large class of curves in [Formula: see text] (which includes all line arrangements) have RFR[Formula: see text] fundamental groups, whereas boundary manifolds of curves in [Formula: see text] may fail to do so. 
    more » « less
  2. null (Ed.)
    Assume [Formula: see text]. Let [Formula: see text] be a [Formula: see text] equivalence relation coded in [Formula: see text]. [Formula: see text] has an ordinal definable equivalence class without any ordinal definable elements if and only if [Formula: see text] is unpinned. [Formula: see text] proves [Formula: see text]-class section uniformization when [Formula: see text] is a [Formula: see text] equivalence relation on [Formula: see text] which is pinned in every transitive model of [Formula: see text] containing the real which codes [Formula: see text]: Suppose [Formula: see text] is a relation on [Formula: see text] such that each section [Formula: see text] is an [Formula: see text]-class, then there is a function [Formula: see text] such that for all [Formula: see text], [Formula: see text]. [Formula: see text] proves that [Formula: see text] is Jónsson whenever [Formula: see text] is an ordinal: For every function [Formula: see text], there is an [Formula: see text] with [Formula: see text] in bijection with [Formula: see text] and [Formula: see text]. 
    more » « less
  3. This paper investigates the existence and properties of a Bernstein–Sato functional equation in nonregular settings. In particular, we construct [Formula: see text]-modules in which such formal equations can be studied. The existence of the Bernstein–Sato polynomial for a direct summand of a polynomial over a field is proved in this context. It is observed that this polynomial can have zero as a root, or even positive roots. Moreover, a theory of [Formula: see text]-filtrations is introduced for nonregular rings, and the existence of these objects is established for what we call differentially extensible summands. This family of rings includes toric, determinantal, and other invariant rings. This new theory is applied to the study of multiplier ideals and Hodge ideals of singular varieties. Finally, we extend known relations among the objects of interest in the smooth case to the setting of singular direct summands of polynomial rings. 
    more » « less
  4. We investigate the phase diagram of the complex cubic unitary ensemble of random matrices with the potential [Formula: see text], where t is a complex parameter. As proven in our previous paper [Bleher et al., J. Stat. Phys. 166, 784–827 (2017)], the whole phase space of the model, [Formula: see text], is partitioned into two phase regions, [Formula: see text] and [Formula: see text], such that in [Formula: see text] the equilibrium measure is supported by one Jordan arc (cut) and in [Formula: see text] by two cuts. The regions [Formula: see text] and [Formula: see text] are separated by critical curves, which can be calculated in terms of critical trajectories of an auxiliary quadratic differential. In Bleher et al. [J. Stat. Phys. 166, 784–827 (2017)], the one-cut phase region was investigated in detail. In the present paper, we investigate the two-cut region. We prove that in the two-cut region, the endpoints of the cuts are analytic functions of the real and imaginary parts of the parameter t, but not of the parameter t itself (so that the Cauchy–Riemann equations are violated for the endpoints). We also obtain the semiclassical asymptotics of the orthogonal polynomials associated with the ensemble of random matrices and their recurrence coefficients. The proofs are based on the Riemann–Hilbert approach to semiclassical asymptotics of the orthogonal polynomials and the theory of S-curves and quadratic differentials.

     
    more » « less
  5. A new surface-rupture-length (SRL) relationship as a function of magnitude [Formula: see text], fault thickness, and fault dip angle is presented in this article. The objective of this study is to model the change in scaling between unbounded and width-limited ruptures. This is achieved through the use of seismological-theory-based relationships for the average displacement scaling and the aid of dynamic fault rupture simulations to constrain the rupture width scaling. The empirical data set used in the development of this relationship is composed of [Formula: see text] events ranging from [Formula: see text] 5 to [Formula: see text] and SRL 1.1 to 432 km. The dynamic rupture simulations data set includes [Formula: see text] events ranging from [Formula: see text] 4.9 to 8.2 and [Formula: see text] 1 to 655 km. For the average displacement [Formula: see text] scaling, three simple models and two composite models were evaluated. The simple average displacement models are a square root of the rupture area [Formula: see text], a down-dip width [Formula: see text], and a rupture length [Formula: see text] proportional model. The two composite models have a [Formula: see text] scaling for unbounded ruptures and transition to [Formula: see text] and [Formula: see text] scaling for width-limited events, respectively. The empirical data favors a [Formula: see text] scaling for the entire regime (unbounded and width-limited ruptures) followed by a [Formula: see text] scaling for unbounded that changes to [Formula: see text] scaling for width-limited ruptures. The selected models exhibit better predictive performance compared to linear [Formula: see text] type models, especially in the large magnitude range, which is dominated by width-limited events. A comparison with published SRL models shows consistent scaling for different fault types and tectonic environments.

     
    more » « less