skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gaussian almost primes in almost all narrow sectors
Award ID(s):
1926686
PAR ID:
10534657
Author(s) / Creator(s):
;
Publisher / Repository:
European Math Society Press
Date Published:
Journal Name:
Revista Matemática Iberoamericana
Volume:
40
Issue:
4
ISSN:
0213-2230
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that, for almost all x x , the interval ( x , x + ( log ⁡ x ) 2.1 ] (x, x+(\log x)^{2.1}] contains products of exactly two primes. This improves on a work of the second author that had 3.51 3.51 in place of 2.1 2.1 . To obtain this improvement, we prove a new type II estimate. One of the new innovations is to use Heath-Brown’s mean value theorem for sparse Dirichlet polynomials. 
    more » « less
  2. Numerically computed with high accuracy are periodic travelling waves at the free surface of a two-dimensional, infinitely deep, and constant vorticity flow of an incompressible inviscid fluid, under gravity, without the effects of surface tension. Of particular interest is the angle the fluid surface of an almost extreme wave makes with the horizontal. Numerically found are the following. (i) There is a boundary layer where the angle rises sharply from $$0^\circ$$ at the crest to a local maximum, which converges to $$30.3787\ldots ^\circ$$ , independently of the vorticity, as the amplitude increases towards that of the extreme wave, which displays a corner at the crest with a $$30^\circ$$ angle. (ii) There is an outer region where the angle descends to $$0^\circ$$ at the trough for negative vorticity, while it rises to a maximum, greater than $$30^\circ$$ , and then falls sharply to $$0^\circ$$ at the trough for large positive vorticity. (iii) There is a transition region where the angle oscillates about $$30^\circ$$ , resembling the Gibbs phenomenon. Numerical evidence suggests that the amplitude and frequency of the oscillations become independent of the vorticity as the wave profile approaches the extreme form. 
    more » « less
  3. Abstract Define theCollatz map$${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$$on the positive integers$$\mathbb {N}+1 = \{1,2,3,\dots \}$$by setting$${\operatorname {Col}}(N)$$equal to$$3N+1$$whenNis odd and$$N/2$$whenNis even, and let$${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$$denote the minimal element of the Collatz orbit$$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $$. The infamousCollatz conjectureasserts that$${\operatorname {Col}}_{\min }(N)=1$$for all$$N \in \mathbb {N}+1$$. Previously, it was shown by Korec that for any$$\theta> \frac {\log 3}{\log 4} \approx 0.7924$$, one has$${\operatorname {Col}}_{\min }(N) \leq N^\theta $$for almost all$$N \in \mathbb {N}+1$$(in the sense of natural density). In this paper, we show that foranyfunction$$f \colon \mathbb {N}+1 \to \mathbb {R}$$with$$\lim _{N \to \infty } f(N)=+\infty $$, one has$${\operatorname {Col}}_{\min }(N) \leq f(N)$$for almost all$$N \in \mathbb {N}+1$$(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a$$3$$-adic cyclic group$$\mathbb {Z}/3^n\mathbb {Z}$$at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency. 
    more » « less